期刊文献+

支持向量机及其在癌症诊断中的应用 被引量:4

Support Vector Machine and its Application in Cancer Diagnose
在线阅读 下载PDF
导出
摘要 支持向量机是基于统计学习理论框架下的一种简单、有效的分类方法。作为结构风险最小化准则的具体实现,支持向量机具有全局最优性和较好的泛化能力。文章通过对训练模型的超参数优化,构造了支持向量机非线性分类器,并将其应用于癌症病人的诊断,取得了较高的识别率。实验结果表明,支持向量机分类器能够快速准确地判断患者肿瘤是恶性还是良性,为治疗提供了可靠的依据,在医学诊断中具有广泛的应用前景。 Support Vector Machines algorithm is a simple and effective classification method based upon statistical learning theory.As a direct implementation of the structure risk minimization,SVM provides good performances such as global optimization and good generalization ability.In this paper,nonlinear SVM classifier is employed to breast cancer disease diagnoses by optimizing hyperparameters of training models.High recognition rate is obtained in the prediction. The experimental results indicate that SVM classifier can fast and accurately judge whether patient's tumour is malignant or benign.It can offer the reliable reference for treatment and provides extensive application prospects in medical diagnosis.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第36期220-222,共3页 Computer Engineering and Applications
基金 吉林省自然科学基金资助项目(编号:20040529) 大学校内青年基金资助项目(编号:11420000)
关键词 支持向量机 核函数 超参数优化 support vector machine,Kernel function,hyperparameters optimization
作者简介 王晶(1976-),硕士生,主要研究方向:模式识别。E-mail:emily_wjj@163.com卫金茂(1967-),博士,副教授,主要研究方向:计算机应用、数据挖掘。
  • 相关文献

参考文献5

  • 1V N Vapnik.Statistical LearningTheory[M].New York:Wiley,1998
  • 2付岩,王耀威,王伟强,高文.SVM用于基于内容的自然图像分类和检索[J].计算机学报,2003,26(10):1261-1265. 被引量:54
  • 3Gestel T V et al.Financial time series prediction using least squares support vector machines within the evidence framework[J].IEEE Trans on Neural Networks,2001; 12(4):809-821
  • 4Suykens J.Nonlinear modeling and support vector machines[C].In:IEEE Instrumentation and Measurement Technology Conference,Budapest,Hungary,2001:287-294
  • 5Kruif B J,Vries T J A.On using a support vector machine in learning feed-forward control[C].In:Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics,Coma,Italy,2001;1:272-277

二级参考文献15

  • 1Burkhardt H, Siggelkow S. Invariant features for discriminating between equivalence classes. In:Nonlinear Model-based Image Video Processing and Analysis. NY: John Wiley and Sons,2000.
  • 2Scholkopf B, Smola A J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond.Cambridge, Mass: MIT Press, 2002.
  • 3Vapnik V N. The Nature of Statistical Learning Theory. NewYork: Springer-Verlag, 2000.
  • 4Scholkopf B, Burges C J C, Smola A J. Advances in Kernel Methods—Support Vector Learning. Cambridge, MA: MIT Press, 1999.
  • 5Smeulders A, Worring M et al. Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(12) : 1349~ 1380.
  • 6Flickner M et al. Query by image and video content: The QBIC system. IEEE Computer, 1995,28(9) : 23 ~32.
  • 7Bach J R, Fuller C, Gupta Aet al. Virage image search engine: an open framework for image management. SPIE Storage and Retrieval of Image and Video DataBases, 1996,4:76 ~87.
  • 8Smith J, Chang S F. VisualSEEK: A fully automated contentbased image query system. In: Proceedings of the 4th ACM Multimedia Conference,Boston MA, USA, 1996.87~98.
  • 9Vailaya A, Figueiredo M, Jain A, Zhang H-J. A Bayesian framework for semantic classification of outdoor vacation images. In: Proceedings of SPIE:Storage and Retrieval for Image and Video Databases VII, San Jose, CA, USA, 1999,3656:415~426.
  • 10Lipson P, Grimson E, Sinha P. Configuration based scene classification and image indexing. In: Proceedings of the 16th IEEE Conference on Computer Vision and Pattern Recognition,Puerto Rico, 1997. 1007~1013.

共引文献53

同被引文献30

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部