期刊文献+

基于误差理论的椭圆识别快速算法 被引量:3

A Fast Ellipse Detection Algorithm Based on the Error Theory
在线阅读 下载PDF
导出
摘要 圆锥曲线的自动识别由于其在实际生活中的广泛应用,一直以来是图像理解领域广泛讨论的课题。本文根据数据处理领域中的误差理论,提出了一种可同时适用于圆与椭圆这两种圆锥曲线识别的新算法,并在程序控制下自动给出识别结果和有关的精度评定。实验证明,该算法针对实际应用中大小、方向各异的两类圆锥曲线的检测,不需要做出任何假设或附加任何条件,也不需要任何累加计数,具有检测速度快、精度高的特点,易于执行,实用性强。 Automatic recognition of ellipses and circles is one of the most widely studied topics in the image understanding field due to its practical uses. Both ellipses and circles belong to the conic sections. In this paper, a novel algorithm based on the error theory is presented, which can detect above two shapes at the same time. The major advantages of the proposed method are its fast speed and high accuracy. In addition, the relevant accuracy can be evaluated right after the recognition. Experiments show that this algorithm applies to ellipses and circles with different sizes and orientations. None of additional condition, assumption and accumulation is required. Therefore the algorithm is practical and easy to be implemented.
作者 魏怡 徐华中
出处 《信息与电子工程》 2005年第4期249-252,共4页 information and electronic engineering
基金 武汉理工大学博士科研启动基金(47138300317)
关键词 信息处理技术 椭圆识别 误若理论 精度 information processing technology ellipse detection error theory accuracy
作者简介 魏怡(1972-),女,河北省乐亭人,博士,副教授,1994年毕业于西安电子科技大学检测技术与仪器专业,获学士学位,1997年毕业于武汉大学信号与信息处理专业,获硕士学位,2001年毕业于University of Strathclyde(英国)电机与电子工程系,获博士学位,现从事模式识别和图像理解领域的研究,发表一本专著,十余篇论文.Email:shirley_yi_wei@yahoo.com 徐华中(1958-),男,湖北省咸宁人,教授,1984年毕业于武汉汽车工业大学自动化专业,获硕士学位,长期从事智能控制方向的研究,公开发表学术论文20余篇,获湖北省科技进步一等奖1项、二等奖2项,武汉市科技进步二等奖1项、三等奖1项,兼任湖北省图书馆学会常务理事,湖北省监察厅特邀监察员.
  • 相关文献

参考文献7

  • 1[1]Y Wei. Circle Detection Using Improved Dynamic Generalized Hough Transform (IDGHT)[A]. 1998 International Geoscience and Remote Sensing Symposium (IGARSS98)[C]. USA: IEEE Publications, 1998.1190-1192 .
  • 2[2]S C Zhang, Z Q Liu. A new algorithm for real-time ellipse detection[A]. 2003 International Conference on Machine Learning andCybernetics[C]. USA: IEEE Publications, 2003.602-607
  • 3[3]T Kawaguchi, R I Nagata. Ellipse detection using a genetic algorithm[A]. Proceedings of the 14th International Conference on Pattern Recognition[C]. USA: IEEE Computer Society Press, 1998.141-145.
  • 4[4]Q Ji, R M Haralick. A statistically efficient method for ellipse detection[A]. Proceedings Of 1999 International Conference on Image Processing[C]. USA: IEEE Computer Society Press, 1999.730-734.
  • 5[5]Y H Xie,Q Ji. A new efficient ellipse detection method[A]. Proceedings of the 16th International Conference on Pattern Recognition[C].USA: IEEE Computer Society Press, 2002. 957-960.
  • 6[6]O M Elmowafy, M C Fairhurst. Improving ellipse detection using a fast graphical method[J]. Electronics Letters, 1999,35(2):135- 137.
  • 7杨忠根,马彦.使用广义正交概念的K-RANSAC椭圆提取[J].自动化学报,2002,28(4):520-526. 被引量:9

二级参考文献2

共引文献8

同被引文献14

  • 1CHANG C C, HWANG S M, BUEHRER D J. A shape recognition scheme based on relative distances of feature points from the centroid[J]. Pattern Recognition, 1991, 24(11): 1053-1063.
  • 2HU Ming-kuei. Visual pattern recognition by moment invariants[J]. IRE Trans Inf Theory, 1962, 8(2) : 179-187.
  • 3ZHU Y, de SILVA L C, KO C C. Using moment invariants and HMM in facial expression recognition[J]. Pattern Recognition, 2002, 23: 83-91.
  • 4LIU Jin, ZHANG Tian-xu. Fast algorithm for generation of moment invariants[J]. Pattern Recognition, 2004, 37: 1745-1756.
  • 5LIU Yi-shu, YANG Li-hua, SUN Qian. Contour-based moment invariants and their application to the recognition of object shapes[J]. Journal of Image and Graphics, 2004, 9(3) : 308-313.
  • 6GHORBEL F, DERRODE S, MEZHOUD R. Image reconstruction from a complete set of similarity invariants extracted from complex moments[J]. Pattern Recognition, 2006, 27: 1361-1369.
  • 7PERSOON E, FU K S. Shape discrimination using Fourier descriptors[J]. IEEE Trans on PAMI, 1986(8) : 388-397.
  • 8KAUPPIEN H, SEPANEN T. An experiment comparison of autoregressive and Fourier based descriptors in 2D shape classification[J]. IEEE Trans on PAMI, 1995(2):201-207.
  • 9DUBOIS S R, GLANZ F H. An autoregressive model approach to two dimensional shape classification[J ]. IEEE Trans on PAMI, 1986(8): 55-56.
  • 10YIP Raymond K K, TAM Peter K S, LEUNG Dennis N K. Modification of hough transform for circles and ellipse detection using a 2-dimensional array[J]. Pattern Recognition, 1992, 25(9): 1007-1022.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部