期刊文献+

几何偏微分方程和离散曲面设计(英文) 被引量:4

Geometric Modelling by Discrete Surface Patches Based on Geometric Partial Differential Equations
在线阅读 下载PDF
导出
摘要 使用若干个几何本质的曲率驱动的偏微分方程来构造符合指定C0或C1边界条件的三边曲面片和四边曲 面片,这些方程的数值解由所涉及的微分几何算子的离散化来得到,微分几何算子的离散化则源于参数逼近.所构 造的曲面片满足某些特定的几何偏微分方程,故具有理想的形状,将这些曲面片组装起来便构造出复杂的几何模 型.通过反复的子分和演化,得到几何模型的多尺度表示. We construct discrete three- and four-sided surface patches with specified C0 or C1 boundary conditions, using several geometric intrinsic curvature driven flows. These flow equations are solved numerically based on discretizations of the involved differential-geometry operators, which are derived from parametric approximations. The constructed surface patches satisfy certain geometric partial differential equations, and therefore have desirable shape. These patches are assembled together for constructing complicated geometric models for shape design. Multi-resolution representations of the models are achieved using repeated subdivision and evolution.
作者 徐国良 潘青
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2005年第12期2596-2606,共11页 Journal of Computer-Aided Design & Computer Graphics
基金 ThisworkwassupportedbyNSFCgrant(10371130) NationalkeybasicresearchprojectofChina(2004CB318000)
关键词 几何设计 几何PDE 离散曲面片 参数逼近 geometric modelling geometric PDEs discrete surface patches parametric approximation
  • 相关文献

参考文献20

  • 1Bloor M I G, Wilson M J. Using partial differential equations to generate free-form surfaces [J]. Computer-Aided Design,1990, 22(4): 221~234.
  • 2Bajaj C, Xu G. Anisotropic diffusion of surface and functions on surfaces [J]. ACM Transactions on Graphics, 2003, 22(1): 4~32.
  • 3Clarenz U, Diewald U, Rumpf M. Anisotropic geometric diffusion in surface processing [A]. In: Proceedings of Vis2000, IEEE Visualization, Salt Lake City, Utah, 2000.397~405.
  • 4Desbrun M, Meyer M, Schroder P, et al. Implicit fairing of irregular meshes using diffusion and curvature flow [A]. In:Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, 1999. 317~324.
  • 5Meyer M, Desbrun M, Schroder P, et al. Discrete differential-geometry operator for triangulated 2-manifolds [A]. In:Proceedings of Visual Mathematics'02, Berlin, 2002. 35~57.
  • 6Schneider R, Kobbelt L. Generating fair meshes with G^1 boundary conditions [A]. In: Proceedings of Geometric Modeling and Processing, Hong Kong, 2000. 251~261.
  • 7Schneider R, Kobbelt L. Geometric fairing of irregular meshes for free-form surface Design [J]. Computer Aided Geometric Design, 2001, 18(4): 359~379.
  • 8Clarenz U, Diewald U, Dziuk G, et al. A finite element method for surface restoration with boundary conditions [J].Computer Aided Geometric Design, 2004, 21 (5): 427~ 445.
  • 9Xu Guoliang. Discrete Laplace-Beltrami operators and their convergence [J]. Computer Aided Geometric Design, 2004, 21(8): 767~784.
  • 10Guo-lian~Xu,ChandrajitL.Bajaj.CURVATURE COMPUTATIONS OF 2-MANIFOLDS IN IR^k[J].Journal of Computational Mathematics,2003,21(5):681-688. 被引量:1

二级参考文献9

  • 1C Bajaj and G Xu, Enhancing and Edge Detecting of Colored Images, 2001.
  • 2C Bajaj and G Xu, Anisotropic Diffusion of Noisy Surfaces and Noisy Functions on Surfaces,TICAM Report 01-07, Texas Institute for Computational and Applied Mathematics, The University of Texas at Austin, 2001.
  • 3C Bajaj and G. Xu, Anisotropic Diffusion of Subdivision Surfaces and Functions on Surfaces,ACM Transactions on Graphics, to appear, 2002.
  • 4M do Caxmo, Riemannian Geometry, Boston, 1992.
  • 5A Yezzi Jr , Modified Curvature Motion for Image Smoothing and Enhancement, IEEE Transections on Image Processing, 7:3 (1998), 345-352 .
  • 6S Rosenberg, The Laplacian on a Riemannian Manifold, Cambridge, Uviversity Press, 1997.
  • 7N Sochen, R Kimmel, and R. Malladi., A General Framework for Low Level Vision, IEEE Transections on Image Processing, 7:3 (1998), 310-318,.
  • 8T J Willmore, Total Curvature in Riemannian Geometry, Ellis Horwood Limited, 1982.
  • 9T J Willmore. Riemannian Geometry, Clarendon Press, 1993.

同被引文献10

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部