期刊文献+

LIMIT THEOREM FOR STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY SEMIMARTINGALES IN MANIFOLDS

LIMIT THEOREM FOR STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY SEMIMARTINGALES IN MANIFOLDS
在线阅读 下载PDF
导出
摘要 In this paper the limit theorem for stochastic differential equation driven by semimartingale on general compact manifold is proved. In this paper the limit theorem for stochastic differential equation driven by semimartingale on general compact manifold is proved.
作者 谢鹏
出处 《Acta Mathematica Scientia》 SCIE CSCD 2005年第4期639-646,共8页 数学物理学报(B辑英文版)
基金 Worksupportedby973project.
关键词 Limit theorem stochastic differential equation MANIFOLD Limit theorem, stochastic differential equation, manifold
作者简介 E-mail: xiepeng@mail.hust, edu. cn
  • 相关文献

参考文献8

  • 1Bismut J M. Méanique alétoire. Lect Notes in Mathematics, 866. Berlin, New York: Springer-Verlag, 1981
  • 2Emery M. Stochastic calculus in manifolds. Universitext. Berlin, New York: Springer-Verlag, 1989
  • 3Gross L. A Poincaré lemma for connection forms. J Funct Anal, 1985, 63:1-46
  • 4Ikeda N, Watanabe S. Stochastic differential equations and diffusion processes. Second edition. NorthHolland Mathematical Library, 24. Amsterdam, New York: North-Holland Publishing Co, Tokyo: Kodansha, Ltd, 1989
  • 5Malliavin P. Stochastic analysis. Grundlehren der Mathematischen Wissenschaften, 313. Berlin: SpringerVerlag, 1997
  • 6Ren J. Analyse quasi-sure des équations différentielles stochastiques. Bull Sci Math, 1990, 114(2): 187-213
  • 7Shigekawa I. On stochastic horizontal lifts. Z Wahrsch Verw Gebiete, 1982, 59(2): 211-221
  • 8Stroock D, Varadhan S R S. On the support of diffusion processes with applications to the strong maximum principle. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol Ⅲ: Probability theory. Berkeley, Calif: Univ California Press, 1972. 333-359

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部