期刊文献+

基于图像处理的旋流燃烧器火焰燃烧状态识别 被引量:3

Swirl Burner Flame Recognition Based on Digital Image Processing System
在线阅读 下载PDF
导出
摘要 分析了常用的基于图像的火焰检测机理,依据现场获得的直流燃烧器和旋流燃烧器火焰图像,发现这些方法并不适用于旋流燃烧器火焰检测。分析其原因并尝试用平均灰度的平均值和方差两个通用特征量对旋流燃烧器的火焰状态进行识别,实验证明方法可行。 The original flame detecting, which is used in the tangential burner is studied. According to the flame image acquired from tangential burner and the swirl burner in plant, the reason why the flame detecting is not fit to the swirl burner is given. To discern combustion state of the. swirl burner at the present two universal characters (gw↑—δg) are used. The experiment show that the method is satisfactory and worth adopting.
出处 《电站系统工程》 北大核心 2005年第6期35-37,共3页 Power System Engineering
关键词 火焰图像 旋流燃烧器 特征提取 状态识别 flame image swirl burner character acquisition state recognition
作者简介 陈立军(1968-),男,博士生。自动化工程学院,132012
  • 相关文献

参考文献4

二级参考文献6

共引文献60

同被引文献34

  • 1张清宇,严建华,倪明江,王飞,马增益,白卫东,林彬,岑可法.分形理论在火焰稳定性诊断中的应用[J].中国电机工程学报,2004,24(12):248-252. 被引量:16
  • 2崔亚兵,陈晓平.燃煤电厂烟气脱硫技术的模糊综合评价[J].动力工程,2005,25(1):136-140. 被引量:35
  • 3穆怀萍,刘石,李志宏,郭建民,姜凡.最小二乘支持向量机可视化燃烧/排放关联特性的研究[J].中国电机工程学报,2006,26(12):161-165. 被引量:6
  • 4Lu G, Yah Y, Colechin M. Adigital imaging based multifunctional flame monitoring system[J]. IEEE Transactions on Instrumentation and Measurement, 2004, 53(4): 1152-1158.
  • 5Zhen Chenggang, Han Pu, Lin Bihua. Improved BP network-based real-time monitor for NOx releasing from power plant furnace [C]. The Second International Conference on Machine Learning and Cybernetics, Xi'an, China, 2003.
  • 6Yu Honglu. Development of vision-based inferential sensors for process monitoring and control[D]. Canada: McMaster University, 2003.
  • 7Shimoda M, Sugano A, Kinura T, et al. Prediction method of unburnt carbon for coal fired utility boiler suing image processing technique of combustion flame[J]. IEEE Transactions on Energy Conversion, 1990, 5(4): 640-645.
  • 8Bae H, Kim S, Wang B, et al. Flame detection for the steam boiler using neural networks and image information in the Ulsan steam Power generation plant[J]. IEEE Transactions on Industrial Electronics, 2006, 53(1): 338-348.
  • 9Mauris G, Benoit E, Foulloy L. The aggregation of information by examples via fuzzy sensors[J]. Fuzzy Systems, 1994(3): 1867-1872.
  • 10Toshio F, Koji S, Fumihito A, et al. Multisensor integration system based on fuzzy inference and neural network[J]. Information Sciences, 1993, 71(1): 27-41.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部