期刊文献+

两相邻Said-Ball曲线的近似合并

Approximate merging of a pair of Said-Ball curves
在线阅读 下载PDF
导出
摘要 利用Said-Ball基函数和Bernste in基函数之间的关系,结合两相邻Béz ier曲线的近似合并方法,给出两相邻Said-Ball曲线的近似合并方法。该法有以下特点:(1)可直接得到合并曲线的控制顶点,(2)不论待合并的两相邻曲线的次数是否相同,均可直接合并,(3)不需对原曲线进行升阶变换,直接提高合并曲线的次数,就可以得到更高阶的合并曲线。在合并过程中,考虑了合并曲线在左右端点处与原曲线达到高阶插值的合并。最后给出数值例子。 The method of approximate merging of two adjacent Said-Ball curves is discussed based on the relation between Said-Ball base function and Bernstein base function and the approximate merging of two adjacent Bézier curves. The presented method has the following three characteristics: (1) the control points can be calculated by the explicit representation; (2) the merging can be done directly no matter whether the degrees of two adjacent original Said-Ball curves are equal or not; (3) the merged curve with a higher degree can be achieved through enhancing the degree of the merged curve directly, and there is no need to elevate the degree of two original adjacent Said-Ball curves. The merging when the merged curve and two original curves satisfy higher order interpolation at the left and right endpoints is also discussed. Numerical examples are given.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第10期1356-1360,共5页 Journal of Hefei University of Technology:Natural Science
关键词 Said—Ball曲线 合并 控制顶点 端点插值 Said-Ball curve merging control point endpoint interpolation
作者简介 郭清伟(1968—),男,安徽濉溪人,博士,合肥工业大学副教授。
  • 相关文献

参考文献6

二级参考文献17

  • 1陈国栋,王国谨.Multi-degree reduction of tensor product Bézier surfaces with conditions of corners interpolations[J].Science in China(Series F),2002,45(1):51-58. 被引量:19
  • 2Hu S M, Tong R F, Ju T, et at. Approxlmate rnarglng of a pair of Bezier curves [J]. Coznputer Aided Design, 2001,33(2) : 125-136.
  • 3Eck M. Degree reduction of Bezier curves[J]. Computer Aided Geometric Design, 1993,10(4):237-257.
  • 4Bogaeki p, Weinsteln S, Xu y. Degree reduction of Bezier curvesby uniform approximation with endpoint interpolation [J ].Computer Aided Design, 1995,27(9) : 651 -661.
  • 5Chen F L, Lou W P. Degree reduction of interval Bezier eurves[J]. Computer Aided Design, 2000,32 ( 3 ): 571-582.
  • 6Hoschek .T. Approxlmate conversion of sp]ine curves [J].Computer Aided Geometric Design, 1987,4(1 ) : 59 - 96.
  • 7Wstkins M, Worsey A. Desree reduction for Bezier curves[J].Computer Geometric Design, 1988, 20( 7 ):398-405.
  • 8王国谨.计算机辅助几何设计[M].北京:高教出版社,施普林格出版社,2001.1-17.
  • 9Watkins M, Worsy A. Degree reduction for Bézier curves[J].Computer Aided Design,1988,20(7):398-405.
  • 10Chen G D, Wang G J.Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity[J].CAGD,2002,19(6):365-377.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部