期刊文献+

一种SVM非线性回归算法 被引量:8

SVM Nonlinear Regression Algorithm
在线阅读 下载PDF
导出
摘要 提出了一种新的基于分类的SVM非线性回归算法(CSVR),首先将Y扩展为Y+ε和Y-ε两个数据集,再将n维输入空间X中的数据连同Y+ε和Y-ε组成n+1维空间χ中的两类数据,并用Z∈{+1,-1}来标识两类数据,再利用标准的SVM二分类算法求解。利用该算法对一系列的基准函数进行测试,取得了令人满意的结果。该算法对噪声数据不敏感,具有较好的鲁棒性,并且可以根据实际需要设定ε的大小,防止出现过拟合现象。该算法由于不需要先验地建立一个参数未知的回归模型,因此可以用在其他传统统计回归算法失效的场合。 A novel SVM nonlinear regression algorithm based on classification (CSVR) is proposed to solve the difficult problem of obtaining nonlinear regression function Y =f(X) under the condition of having no knowledge about regression model. First, Y is extended into two data sets, Y + ε and Y- ε. Then two n+1 dimension data sets labeled with Z∈ (+1, -1 ) are achieved by adding n-dimension data of input space X to those two data sets. Next the two nonlinear unclassified data sets are transformed to linear classified data sets in a higher dimension feature space by a particular mapping function Ф.Finally, the paper trains the data sets with standard SVM two classification algorithm. Experiment is conducted on a series of benchmark functions and the result shows that the approach is satisfactory. This algorithm is robust and insensitive to noise. It can prevents from over-fitting by setting the value of ε empirically. Since the algorithm does not require a prior regression model with unknown variables, it can be utilized in the circumstances where other traditional statistical regression algorithms fail.
出处 《计算机工程》 EI CAS CSCD 北大核心 2005年第20期19-21,共3页 Computer Engineering
基金 国家自然科学基金资助项目(30271048) 校引进(留学)人才基金资助项目(G2002-28) 校科研基金资助项目(X02-070-1(Z))
关键词 非线性 回归算法 支持向量机 Nonlinearity Regression algorithm SVM
作者简介 业宁(1967-),男,讲师、博士生,主研方向:机器学习和数据挖掘,E-mail:yening@njfu.edu.cn 梁作鹏,博士生 董逸生,教授、博导 王厚立,教授、博导
  • 相关文献

参考文献6

  • 1VapnikV.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 2Smola A J, Scholkopf B. A Tutorial on Support Vector Regression[R]. Technical Report, NC2-TR-1998-030, ESPRIT Working Group, 1998
  • 3Muller K R, Smola A, Ratsch G , et al. Predicting Time Series with Support Vector Machines. In Artificial Neural Networks. In: ICANN'97, Berlin, 1997, Springer Lecture Notes in Computer Science,1997,1327:999-1004
  • 4Stitson M, Gammerman A, Vapnik V, et al. Support Vector Regression with ANOVA Decomposition Kernels. Advances in Kernel Methods -Support Vector Learning, Cambridge, MA, MIT Press,1999:285-292
  • 5Drucker H, Burges C J C, Kaufman L, et al. Support Vector Regression Machines. Advances in Neural Information Processing Systems 9, Cambridge, MA, MIT Press,1997:155-161
  • 6BrockwellPJ DavisRA 田铮译.时间序列的理论与方法(第二版)[M].北京:高等教育出版社,2001..

共引文献26

同被引文献81

引证文献8

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部