期刊文献+

基于集成神经网络的刀具磨损量监测 被引量:8

Tool Wear Monitoring Based on Integrated Neural Networks
在线阅读 下载PDF
导出
摘要 提出了一种基于集成神经网络识别铣刀磨损量的监测方法.利用小波包变换将切削力和振动信号分解为不同频带的时间序列,从每个信号中选择与刀具磨损状态最相关的3组频段的均方根作为监测特征;通过信号的组合和不同子网络输出决策间的融合,集成神经网络输出刀具磨损的识别结果.试验和仿真分析表明,此方法能够满足刀具磨损量实时监测的要求. A tool wear condition monitoring approach based on integrated neural networks was proposed to recognize and predict tool wear conditions in milling operations. In this approach, vibration and cutting force signals are decomposed into time sequences in different frequency bands by wavelet packet transform, and the root mean square values of each signal in three frequency bands, extracted from decomposed signals, with a close relation to wear conditions are selected as monitoring features. The final recognition results of tool wear are given by the integrated neural networks through the combination of signals and the decision fusion of different subnets. Experiments and simulations show that the proposed approach can meet the requirements of on-line monitoring of tool wear conditions.
出处 《西南交通大学学报》 EI CSCD 北大核心 2005年第5期641-644,653,共5页 Journal of Southwest Jiaotong University
关键词 刀具磨损监测 多传感器 小波包 集成神经网络 tool wear monitoring multi-sensor wavelet packet integrated neural network
作者简介 高宏力(1971-),男,博士研究生,研究方向为智能制造技术、智能化状态监测与故障诊断技术.
  • 相关文献

参考文献8

  • 1张昆,宋千,郝晓红.金属切削刀具磨损的监控和预报研究[J].中国机械工程,1994,5(6):61-62. 被引量:7
  • 2Dornfeld D A, Rangwala S.Integration of sensor via neural networks for the detection of tool wear states[J]. ASME Winter Annual Meeting, 1987. 109-120.
  • 3Issam Abu-Mahfouz. Drilling wear detection and classification using vibration signals and artificial neural network[J]. International Journal of Machine Tools & Manufacture, 2003, 43: 707-720.
  • 4Tugrul O Z, Abhijit N. Prediction of flank wear by using back propagation neural network modeling when cutting hardened H-13 steel with chamfered and honed CBN tools[J]. International Journal of Machine Tools & Manufacture, 2002, 42: 287-297.
  • 5Bernhard S.On-line and indirect tool wear monitoring in turning with artifcial neural networks: a review of more than a decade of research[J]. Mechanical Systems and Signal Processing, 2002, 16(4): 487-546.
  • 6Shao H,Wang H L,Zhao X M. A cutting power model for tool wear monitoring in milling [J]. International Journal of Machine Tools & Manufacture, 2004, 44: 1 503-1 509.
  • 7Choudhury S K, Srinivas P. Tool wear prediction in turning [J]. Journal of Materials Processing Technology, 2004, 153: 276-280.
  • 8Dimla E.Dimla Snr. Sensor signals for tool-wear monitoring in metal cutting operations-a review of methods[J]. International Journal of Machine Tool & Manufacture, 2000, 40: 1 073-1 098.

共引文献6

同被引文献94

引证文献8

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部