期刊文献+

缓冲区有限流量整形器性能参数的最小加代数表示 被引量:4

Min-Plus Algebra Representation for Performance Parameters with Finite Flow Shaper in Buffer
在线阅读 下载PDF
导出
摘要 针对目前在流量整形器建模中将整形器视为无限缓存设备的缺陷,基于网络演算,使用最小加代数建立了有限缓冲区的流量整形器(FSS)模型,获得了FSS的分组时延和分组丢失与预留缓存空间的关系,给出了FSS性能参数的最小加代数表示.研究结果表明:当贪心整形器的服务曲线大于业务流的到达曲线时,整形器的引入不会额外增加业务流丢失的分组数,而整形器的缓冲特性能够减少网络中业务流丢失的分组数;在给定目标服务质量参数的前提下,相关结论可用于确定资源预留的上界,以改进网络的规划与设计. Aiming at the flaw that the shaper is regarded as an unlimited storage device when modelling the flow shaper, a finite storage shaper (FSS) model was built by min-plus algebra based on network calculus. The relation between the packet delay and packet loss of FSS and the reserved buffer space was obtained and the FSS performance parameters were represented by min-plus algebra. Research results show that the shaper will not extra increase the packet number of flow loss when the greedy service curve of shaper is larger than the arrival curve of the flow, and the buffering characteristic of the shaper can decrease the packet number of the flow loss in the network. The results can be applied to determining the upper bound of resource reservation so as to improve the design of network when the target parameters of quality of service are given.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2005年第10期1068-1071,共4页 Journal of Xi'an Jiaotong University
基金 国家高技术研究发展计划资助项目(863-511-946-008)
关键词 流量整形器 最小加代数 网络演算 flow shaper rain-plus algebra network calculus
作者简介 高岭(1972-),男,博士生; 李增智(联系人),男,教授,博士生导师.
  • 相关文献

参考文献10

  • 1张信明,陈国良,顾钧.基于网络演算的流量整形模型[J].软件学报,2002,13(12):2225-2230. 被引量:24
  • 2RFC2475-1998, An architecture for differentiated services [S].
  • 3Chang C S. Stability, queue length and delay, part I: deterministic queuing networks[R]. IBM Technical Report, RC-17708. New York: IBM, 1992.
  • 4Cruz R L. A calculus for network delay, part I: network elements in isolation [J]. IEEE Transactions on Information Theory, 1991, 37(1):114-131.
  • 5Cruz R L. A calculus for network delay, part II: network analysis[J]. IEEE Transactions on Information Theory, 1991, 37(1):132-141.
  • 6Yuming J. Relationship between guaranteed rate server and latency rate server[J]. Computer Networks, 2003, 43(3):307-315.
  • 7Markus F, Volker S. A parameter based admission control for differentiated services networks [J]. Computer Networks, 2004, 44(4):463-479.
  • 8Urvoy G, Dallery Y, Hébuterne G. CAC procedure for leaky bucket-constrained sources [J]. Performance Evaluation, 2000, 41(2):117-132.
  • 9Boudec J Y L, Thiran P. Lecture notes in computer science network calculus[M]. Berlin: Springer-Verlag, 2001.
  • 10Boudec J Y L, Thiran P. Lecture notes in computer science: application of network calculus to the Internet [M]. Berlin: Springer-Verlag, 2001.

二级参考文献1

共引文献23

同被引文献30

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部