摘要
研究了二维布局优化问题,建立了具有性能约束的二维布局半无限优化模型.应用图论、群论等,把该问题分解为有限多个子问题,在每个子问题中克服了优化变量的时断时续性质,并将子问题松弛化,利用极大极小函数给出了松弛子问题的最优性函数,该函数在其零点使松弛子问题的一阶必要条件成立.利用最优性函数构造了松弛子问题的优化算法,并证明了算法的收敛性.
The two-dimensional layout optimization problem is studied. A semi-infinite optimization model with performance constraints is presented. The layout problem is partitioned into finite subproblems by virtue of graph theory, the action of group on set, orbits and so on, so that each subproblem can overcome the on-off nature of optimal variable. Each subproblem is relaxed and the optimality function is presented by using the minimax function. The fast order necessary optimality condition of the relaxed subproblem is satisfied at a point if and only if the point is a zero of the optimality function. The optimization algorithm for the relaxed subproblem is constructed by virtue of the optimality function and the convergence is proved.
出处
《大连理工大学学报》
EI
CAS
CSCD
北大核心
2005年第5期766-771,共6页
Journal of Dalian University of Technology
关键词
二维布局
半无限优化
最优性函数
优化算法
收敛性
two-dimensional layout
semi-infinite optimization
optimality function
optimization algorithm
convergence
作者简介
张旭(1977-),女,博士,讲师,E—mail:zhangxu0451@163.com;
冯恩民(1939-),男,教授,博士生导师。