期刊文献+

广义多值拟变分包含解的两步迭代(英文) 被引量:1

Two-step Iterative Algorithms for Generalized Multivalued Quasi-Variational Inclusions
在线阅读 下载PDF
导出
摘要 本文引入并研究了Hilbert空间中的一类广义多值拟变分包含问题.借助预解算子技巧构造了一个新的两步迭代算法来逼近广义多值拟变分包含的解,并且证明了其解的存在性以及迭代算法生成的迭代序列的收敛性. In this paper.we introduce and study a new class of generalized multivalued quasi-variational inclusions in Hilbert space. By using the implicit resolvent operator technique, we construct a new two-step iterative algorithms for solving the generalized multivalued quasi-variational inclusions. And we prove the existence of solution for this kind of variational inclusions and the convergence of iterative sequences generalized by the algorithms.
作者 龙宪军
出处 《应用数学》 CSCD 北大核心 2005年第4期603-609,共7页 Mathematica Applicata
基金 Education Committee project Research Foundation of Chongqing (030801)
关键词 广义多值拟变分包含 预解算子技巧 两步迭代算法 收敛 HILBERT空间 Generalized multivalued quasi-variational inclusions Two-step iterative algorithms Implicit resolvent operator Convergence Hilbert space
作者简介 Biography: LONG Xian-jun, male, Han, Chongqing, master, major in optimization.
  • 相关文献

参考文献11

  • 1Huang N J et al. Generalized nonlinear mixed quasi-variational inequalities[J]. Computers and Math. ,2000,40:205 -215.
  • 2Salahuddin. Parametric generalized set-valued quasi-variational inclusions[J].J. Math. Anal. Appl. , 2004.298: 146- 156.
  • 3Noor M A. Three-step iterativc algorithms for multivalued quasi-variational inclusions[J]. J. Math. Anal. Appl., 2001,255 : 589 - 604.
  • 4Huang N J. Mann and Ishikawa type perturbed iterative algorithms for generalized nonlinear implicit quasi-variational inclusions[J ]. Computers Math. Appl. , 1998,35 (10): 1 - 7.
  • 5Demyanov V F. Stavroulakis G E, Polyakova I. N. Panagiotopoulous P D. Quasi-differenfiability and nonsmooth modeling in mechanics[A]. Engineering and Economics[C]. Boston: Kluwer Academic Press,1996.
  • 6Ding X P. Perturbed proximal point for generalized quasi-variational inclusions[J].J. Math. Anal. Appl. ,1997,210:88-101.
  • 7Noor M A,Oettli W. On general nonlinear complementarity problems and quasi-equilibria[J]. Lett. Mathematics,1992.94:313-331.
  • 8Noor M A. Generalized set-valued variadonaI inclusions and implicit resolvent equadons[J]. J. Math. Anal. Appl. , 1998,228:206 -220.
  • 9Noor M A. Sensitivity analysis framework for general quasi-variational inclusions[J]. Computers Math. Appl. ,2002,14:1175-1181.
  • 10Chang S S. Variational Inequality and Complementarity Problem Theory with Applications, Shanghai Scientific and Tech[M]. Skanghai: Literature Publishing House, 1991.

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部