摘要
本文引入并研究了Hilbert空间中的一类广义多值拟变分包含问题.借助预解算子技巧构造了一个新的两步迭代算法来逼近广义多值拟变分包含的解,并且证明了其解的存在性以及迭代算法生成的迭代序列的收敛性.
In this paper.we introduce and study a new class of generalized multivalued quasi-variational inclusions in Hilbert space. By using the implicit resolvent operator technique, we construct a new two-step iterative algorithms for solving the generalized multivalued quasi-variational inclusions. And we prove the existence of solution for this kind of variational inclusions and the convergence of iterative sequences generalized by the algorithms.
出处
《应用数学》
CSCD
北大核心
2005年第4期603-609,共7页
Mathematica Applicata
基金
Education Committee project Research Foundation of Chongqing (030801)
关键词
广义多值拟变分包含
预解算子技巧
两步迭代算法
收敛
HILBERT空间
Generalized multivalued quasi-variational inclusions
Two-step iterative algorithms
Implicit resolvent operator
Convergence
Hilbert space
作者简介
Biography: LONG Xian-jun, male, Han, Chongqing, master, major in optimization.