期刊文献+

机车二系弹簧载荷调整混合算法优化方法 被引量:1

Optimal Adjustment of Locomotive Secondary Spring Loads Using Hybrid Algorithm
在线阅读 下载PDF
导出
摘要 针对机车二系弹簧支承载荷均匀性分配调整的复杂多变量优化问题,提出了综合运用遗传算法(GA)和蚂蚁算法(AA)的混合优化调整算法模型。该算法模型首先采用GA进行全局快速随机搜索,获得若干候选的近似优化解,以此生成蚂蚁算法初始信息素分布,再用AA求得全局优化精确解。论文给出了混合算法模型的设计。对SS3b和SS9机车的仿真计算结果表明,该方法应用于二系调簧的多维连续性空间优化问题,可获求解性能和时间效率的综合提高。 A hybrid algorithm based on the combination of Genetic Algorithm(GA) and Ant Algorithm(AA) is introduced for a complicated multi-variable optimization problem of adjusting locomotive secondary spring loads to the minimized unbalance state. The algorithm firstly adopts GA, with its capability of fast and global stochastic searching,to find a number of approximate optimal solution candidates, by which the initial pheromone distribution for AA is generated,and then applies AA to obtain precise optimized solution to the problem. Detailed model of the hybrid algorithm is presented. Computing results of Simulation on SS3b and SS9 locomotives show that the algorithm achieves better performance in terms of more accurate and faster real-time computing ability in solving the continuous multi-dimension space optimization problem of the spring loads adjustment.
出处 《系统工程》 CSCD 北大核心 2005年第8期116-120,共5页 Systems Engineering
基金 铁道部科技基金资助项目(J2000Z040)
关键词 遗传算法 蚂蚁算法 混合算法 优化方法 机车二系弹簧载荷 调整 GA AA Hybrid Algorithm Optimal Method Locomotive Secondary Spring load Adjustment
作者简介 潘迪夫(1957-),男,广东兴宁人,中南大学交通运输工程学院副教授,研究方向:载运工具性能优化智能测控技术及应用。
  • 相关文献

参考文献5

二级参考文献21

  • 1韦柳涛,曾庆川,姜铁兵,虞锦江,黄定疆.启发式遗传基因算法及其在电力系统机组组合优化中的应用[J].中国电机工程学报,1994,14(2):67-72. 被引量:27
  • 2石琳珂.逐步缩小搜索范围的遗传算法[J].地球物理学进展,1995,10(4):67-79. 被引量:24
  • 3周双喜,杨彬.影响遗传算法性能的因素及改进措施[J].电力系统自动化,1996,20(7):24-26. 被引量:26
  • 4汪树玉 杨德铨.优化原理、方法与工程应用[M].杭州:浙江大学出版社,1999..
  • 5陆冠东 吕映华.机车轴重调整的计算和分析[J].内燃机车,1988,(7):1-6.
  • 6汪树玉 杨德铨.优化原理、方法与工程应用[M].杭州:浙江大学出版社,1999..
  • 7Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies [A]. Proc Europ Conf Artif Life [C ]. Paris : Elsevier Publishing, 1991. 134-142.
  • 8Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to traveling salesman problem [J]. IEEE Trans Evolution Computation, 1997,1(1):53-56.
  • 9Colorni A, Dorigo M, Maniezo V, et al. Ant system for job-shop scheduling[J]. Belgian J Oper Res Stat Comp Sci,1994,34:39-53.
  • 10Maniezzo V, Colorni A. The ant system applied to the quadratic assignment problem [J]. IEEE Traru Knowl Data Eng, 1999,1 (5): 769-778.

共引文献293

同被引文献14

  • 1潘迪夫,黎航,韩锟.基于遗传算法的机车二系支承载荷调整优化方法[J].中国铁道科学,2005,26(3):83-87. 被引量:11
  • 2胡苏杭,单春贤,韩钧,仲敏波.神经网络在自动调平系统中的应用[J].控制工程,2007,14(B05):64-66. 被引量:2
  • 3韩锟.机车车体称重调簧试验台试验研究[D].长沙:中南大学,2003.
  • 4Curtis D L,Skrzypezyk W G,Thomas T J.Method of adjustingthe distribution of locomotive axle loads:United States,4793047[P].1988-12-27.
  • 5Nenov N,Dimitrov E,Mihov G,et al.Electronic system ofmeasuring locomotive wheels load and defining operationsnecessary to minimize existing differences[C]//29th ISSE.Centre St.Marienthal,Germany,2006:219-224.
  • 6Castro J L,Mantas C J,Benitez J M.Neural networks with acontinuous squashing function in the output are universalapproximators[J].Neural Networks,2000,13(6):561-563.
  • 7Hecht-Nielson R.Theory of the backpropagation neuralnetwork[C]//Proceedings of the International Joint Conferenceon Neural Networks.New York,USA:IEEE TAB NeuralNetwork Committee,1989:593-605.
  • 8Masters T.Practical neural networks recipes in C++[M].London:Academic Press,1993:173-180.
  • 9Hagan M T,Menhaj M B.Training feedforward networks withthe Marquardt algorithm[J].IEEE Transactions on NeuralNetworks,1994,5(6):989-993.
  • 10Karkoub M,Elkamel A.Modelling pressure distribution in arectangular gas bearing using neural networks[J].TribologyInternational,1997,30(2):139-150.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部