期刊文献+

高纯铝箔在异步轧制和再结晶过程中取向的演变 被引量:13

EVOLUTION OF THE ORIENTATION OF CROSS SHEAR ROLLING HIGH PURITY ALUMINUM FOILS DURING DEFORMATION AND RECRYSTALLIZATION
在线阅读 下载PDF
导出
摘要 采用不同速比的异步轧制技术对99.99%的高纯铝板进行不同形变量的冷轧,并对冷轧样品进行不同温度和时间的再结晶退火.利用X射线衍射技术和TEM观测探讨了异步轧制条件下高纯铝箔中变形织构和再结晶织构的演变.结果表明:高速比的异步轧制(i=1.28)在样品中产生相对较强的旋转立方织构{001}(110).异步轧制后退火的高纯铝箔样品中,立方{001}(100)织构组分的再结晶晶核的形成和长大存在一个临界转变温度,此温度与异步轧制的速比成反比.异步轧制有利于降低高纯铝箔的再结晶温度,这与异步轧制提高高纯铝箔的形变储能有关.异步轧制有利于在低温时形成强的立方{001}(100)织构组分,但此时漫散较大;随着退火温度的升高,漫散范围明显缩至8°-10°. Hot rolled high purity aluminum sheet (99.99%) was cold rolled by cross shear rolling with different roll mismatch speed ratios (i=1.06, 1.17, 1.28). The rolled specimens were heated or annealed at different temperatures for different times. Texture distribution and microstructures of specimens were studied by X-ray diffraction technique (ODF analysis) and TEM, respectively. The results showed that the strong rotated cube texture component {100}(011) formed and developed in the cross shear rolling specimen with high roll mismatch speed ratio (i=1.28). During annealing, there is a temperature threshold value for the formation and development of cube texture {001}(100), which is inversely proportional to speed ratio. The cross shear rolling accelerates the recrystallization processes, which is related to deformation stored energy. The easy formation and development of cube texture {001}(100) of high purity aluminum foils after cross shear rolling are analyzed based on theory of deformation and recrystallization.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2005年第9期953-957,共5页 Acta Metallurgica Sinica
基金 国家高技术研究发展规划项目2003AA331080 沈阳市科学技术计划项目1032040-1-04资助
关键词 异步轧制 高纯铝箔 立方织构 形变 再结晶 cross shear rolling, high purity aluminum foil, cube texture, deformation, recrystallization
作者简介 黄涛,女,1962年生,副教授,博士生;Correspondent: HUANG Tao, associate professor, Tel: (024) 24193686, E-mail: sysdht@sina. com.
  • 相关文献

参考文献5

二级参考文献11

  • 1曹富荣,段曰瑚,吴庆龄.国产及进口高压电容器铝箔的电子显微研究[J].电子元件与材料,1996,15(4):52-54. 被引量:5
  • 2刘楚明 张新明.-[J].有色金属,2001,11:10-10.
  • 3朱泉.钢铁[J].-,1980,15:1-1.
  • 4曹富荣.[D].沈阳: 东北大学,1991.
  • 5[4]Chen N, Mao W, YuY, et al. A Method of Quantitative Fiber Tecture Analysis. Textures of Materials. ICOTOM-11,1996.81-83
  • 6[5]Liang Zuo, Jacques Muller, Claude Esling. Volume Fractions of Texture Components in Polycrystalline Materials. Appl. Cryst,1993,26:422~425.
  • 7[6]Liang Zuo,Jacques Muller, Claude Esling. Evaluation of Volume Fractions of Fiber-Type Texture Components. J. Appl. Cryst.1994,27:358~361.
  • 8[7]Ruer D,Baro R.J.Appl. Cryst, 1977,(10):458.
  • 9[8]Wang Fu,Jiaz-hen Xu, Liang Zhide. Application of the Maximum Entropy Method to the Inverse Pole Figure Determination of Cubic Materials. J. Appl. Cryst,. 1991,24:126-128.
  • 10Engler O,Moo Y H.Evolution of the Evolution of the Cube Texture in High Purity Aluminum Capacitors Foils by Continuous Recrystallization and Subsequent Grain Growth[J].Materials Science and Engineering,1999,271:371-374.

共引文献44

同被引文献125

引证文献13

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部