期刊文献+

基于像素灰度归类的背景重构算法 被引量:97

A Background Reconstruction Algorithm Based on Pixel Intensity Classification
在线阅读 下载PDF
导出
摘要 背景差法是一种重要的运动检测方法,其难点在于如何进行背景更新.针对该问题,提出一种基于像素灰度归类的背景重构算法,即在假设背景像素灰度以最大概率出现在图像序列的前提下,利用灰度差对相应像素点灰度进行归类,选择频率最高的灰度值作为该点的背景像素值.在背景缓慢变化和突变时,分别利用该算法进行定时和实时背景重构具有明显的优点.仿真结果表明,即使场景中存在运动前景,该算法也能够准确地重构背景,并有效地避免混合现象,从而实现对运动目标的完整提取,以便进一步识别或跟踪. The background subtraction is an important method to detect the moving objects, and its difficulty is the background update. So a background reconstruction algorithm based on pixel intensity classification is presented in this paper. According to the hypothesis that the background pixel intensity appears in image sequence with maximum probability, the pixel intensity differences between sequential two frames are calculated, and the intensity values at the pixels are classified by means of these differences. For the new algorithm, neither the pre-training of the background without any moving target, nor the models of background and targets are needed. Simulation results indicate that background can be reconstructed correctly by using the new algorithm, so the target can be extracted perfectly and tracked successfully.
出处 《软件学报》 EI CSCD 北大核心 2005年第9期1568-1576,共9页 Journal of Software
基金 国家重点基础研究发展规划(973)~~
关键词 背景差 背景重构 运动检测 图像分割 跟踪 视频监视 background subtraction background reconstruction motion detection image segmentation tracking visual surveillance
作者简介 侯志强(1973-),男,陕西眉县人,博士,副教授,主要研究领域为图像处理,计算机视觉,信息融合; 韩崇昭(1943-),男,教授,博士生导师,主要研究领域为随机与自适应控制,非线性系统,多源信息融合.
  • 相关文献

参考文献25

  • 1岑峰,戚飞虎,陈茂林.长期视频监控系统的多分布模型背景差方法[J].红外与毫米波学报,2002,21(1):59-63. 被引量:23
  • 2Horn BK, Schunk BG. Determining optical flow. Artificial Intelligence, 1981,17(1-3): 185-203.
  • 3Smith SM, Brady JM. ASSET-2: Real-Time motion segmentation and shape tracking. IEEE Trans. on PAMI, 1995,17(8):814-820.
  • 4Neff A, Colonnese S, Russo G, Talone P. Automatic moving object and background separation. Signal Processing, 1998,66(2):219-232.
  • 5Meier T, Ngan KN. Automatic segmentation of moving objects for video object plane generation. IEEE Trans. on Circuits and Systems for Video Technology, 1998,8(5):525-538.
  • 6Jolly MPD, Lakshmanan S, Jain AK. Vehicle segmentation and classification using deformable templates. IEEE Trans. on PAMI,1996,18(3):293-308.
  • 7Ridder C, Munkelt O, Kirchner H. Adaptive background estimation and foreground detection using Kalman-filter. In: Proc. of the Int'l Conf. on Recent Advances in Mechatronics, ICRAM'95. UNESCO Chair on Mechatronics, 1995. 193-199.
  • 8Friedman N, Russell S. Image segmentation in video sequences: A probabilistic approach. In: Proc. of the 13th Conf. on Uncertainty in Artificial Intelligence (UAI). San Francisco, 1997.
  • 9Stauffer C, Grimson WEL. Adaptive background mixture models for real-time tracking. In: Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Vol 2. 1999. 246-252.
  • 10KaewTraKulPong P, Bowden R. An improved adaptive background mixture model for real-time tracking with shadow detection. In:The 2rid European Workshop on Advanced Video-based Surveillance Systems. Kingston upon Thames, 2001.

二级参考文献21

  • 1[1]Toyama K, Krumm J, Brumitt B, et al. Wallfollower: principles and practice of background maintenance. Inter. Conf. on Computer Vision, 1999, Corfu, Greece, 224-261
  • 2[2]Huwer S, Niemann H. Adaptive change detection for real-time surveilliance application. 3rd IEEE Inter. Workshop on Visual Surveillance, Dublin, Ireland, July 2000, 37-45
  • 3[3]Wern C R, Azarbayejani A, Darrell T, et al. Pfinder:real-time tracking of human body. IEEE Transaction on Pattern Analysis and Machine Intelligence,1997, 19:780-785
  • 4[4]Ridder C, Munkelt O, Kirchner H. Adaptive background estimation and foreground detection using Kalman-Filtering. In: Proc. International Conf. on recent advances in mechatronics, ICRAM'95, Istanbul, Turkey, Aug. 1995:193-199
  • 5[5]Elgammal A, Harwood D, Davis L. Non-parametric model for background subtraction. ICCV Frame Rate Workshop, 1999:246-252
  • 6[6]Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking. IEEE Conf. on CVPR.,1999:
  • 7[7]Rosin P L, Ellis T. Image difference threshold strategies and shadow detection. Proc. of the Sixth British Machine Vision Conference,1995,347-356
  • 8Ude A and Riley M. Prediction of body configurations and appearance for model-based estimation of articulated human motions[J]. IEEE SMC' 99 Conference Proceedings, 1999,2, 687-691.
  • 9Ricquebourg Y and Bouthemy P. Real-time tracking of moving persons by exploiting spatio-temporal image slices [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000 22(8): 797 -808.
  • 10Tsap L V, Goldof D B and Sarkar S. Nonrigid motion analysis based on dynamic refinement of finite element models [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000 22(5): 526-543.

共引文献48

同被引文献764

引证文献97

二级引证文献610

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部