期刊文献+

基于SVM分类器的SYN Flood攻击检测规则生成方法的研究 被引量:3

A WAY TO CREATE MISUSE RULES TO DETECT SYNFLOOD BASED ON SVM
在线阅读 下载PDF
导出
摘要 洪泛攻击(SYN flood)是目前最常用的拒绝服务攻击之一,它通过发送大量TCP请求连接报文,造成大量的半连接从而消耗网络资源.由于洪泛攻击中所使用的数据包都是正常数据包,又采用了伪IP技术,使得对其的检测和阻断都十分困难.本文分析了洪泛攻击的攻击原理以及检测并阻断攻击困难的原因,提出了二次检测的防御方法,先用SVM异常检测分类器检测出攻击报文,再依据报文相似度生成误用检测规则从而阻断攻击报文.试验结果表明这种方法对SYN flood攻击的检测效果明显。 SYN flood is the most popular DOS(Denial of Sever) attack at present. It makes lots of half-connection to use up the net resource through send huge number of TCP connect-request packet. It is difficult to defense this kind of attack because the packets it sent are the normal packets with fake IP address. This article analysis the elements of SYN flood attack and why it is so difficult to defense. And the article also gives a way to defense SYN flood through twice detect and interdiction: First, detect the abnormal packet using the classifier based on the SVM(Support Vector Machine) arithmetic, than create the misuse rule using the similar degree of the vector of these packet to interdict the attack packets. The result of the experiment shows that the effect this way to defense SYN flood is evidence.
出处 《计算机应用与软件》 CSCD 北大核心 2005年第10期38-39,51,共3页 Computer Applications and Software
基金 航空科学基金项目(04c52009)
关键词 SYNFLOOD SVM 入侵检测 规则生成 拒绝服务攻击 SVM分类器 检测规则 SYN 生成方法 网络资源 SYN flood SVM Intrusion detection system Create rule
作者简介 蒋琦.硕士生,主研领域:入侵检测。
  • 相关文献

参考文献7

  • 1李蓉,叶世伟,史忠植.SVM-KNN分类器——一种提高SVM分类精度的新方法[J].电子学报,2002,30(5):745-748. 被引量:134
  • 2C.Schuba, I.Krsul, M.Kuhn, et. Analysis of a denial of service attack on TCP. In: Proc. 1997 IEEE Syrup. Security and Privacy.LosAnlamitos,Oakland:IEEE Cmoputer Society Press,1997.
  • 3P.Rerguson,D.Senie.Network ingress filtering:defeating denial of service attacks which employ IP source address spoofing. RFC 2267,http ://www.ieff.org/rgc/rfc2267.txt, 1998-01-17.
  • 4Koutepas G,Stamatelopoulos F.Maglaris B. Distributed Management Architecture for Cooperative Detection and Reaction to ddos Attacks.Journal of Network and Systems Management 2004,25(11): 483,--490.
  • 5T.Aura, P.Nikanader. Stateless connections. In: Proc. The 1st Int' 1 Conf.Information and Communication Security (ICICS97), Lecture Notes in Computer Science 1334. Heidelberg : Springer, 1997,21 (45):79-86.
  • 6N. Crisfianini and J. Shawe-Taylor, An Introduction to Support Vector Machines, Cambridge, UK: Cambridge University Press, 2000.
  • 7C. Manikopoulos and S. Papavassiliou, Network intrusion and faul:detection: a statistical anomaly approach. IEEE Communication Magazine.2002, 10(65).122-134.

共引文献133

同被引文献6

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部