期刊文献+

基于边缘定向扩散的图像增强方法 被引量:7

Image Enhancement Based on Edge-directed Diffusion
在线阅读 下载PDF
导出
摘要 针对前向后向扩散方程不能较好的保持流线状结构,而相干增强不能锐化边缘的缺点,提出一种新的基于边缘定向的张量型前向后向扩散模型.该模型将前向-后向扩散方程引进到张量型扩散方程中,在扩散系数的选取上合并了相干增强扩散与前向-后向扩散的长处,又克服了他们各自的缺点.采用类似相干增强扩散的边缘定向算子实现对边缘的定向,然后根据边缘定向的结果设置扩散张量的特征根,使扩散张量沿边缘方向为正向扩散以增强边缘,而垂直于边缘方向为逆扩散以锐化边缘.理论分析和数值计算表明,该方法具有比相干增强扩散及前向-后向扩散更好的增强效果. Since forward and backward diffusion cannot hold flow-like edges, and coherence enhancement diffusion cannot sharpen edges, a new edge-directed nonlinear diffusion equation to enhance image is put forward. The new model introduces forward and backward diffusion to the tensor diffusion, and gets a new diffusivity, which combines the merits of these two methods. The new model adapts an operator like coherence enhancement diffusion for edge orientation, and defines eigenvalues based on edgers orientation such that the new tensor has positive diffusion coefficient in edge direction and negative diffusion coefficient in gradient direction. Both theory analysis and numerical results show that the new model has better enhancement result than coherence enhancing diffusion and forward and backward diffusion.
出处 《光子学报》 EI CAS CSCD 北大核心 2005年第9期1420-1424,共5页 Acta Photonica Sinica
基金 全国优秀博士论文作者专项基金(批准号:200140) 国家自然科学基金(批准号:60272013)资助
关键词 偏微分方程 图像增强 逆扩散 特征向量 特征根 边缘定向 Differential Equation Image enhancement Backward diffusion Eigenvector Eigenvalue Edge Orientation
作者简介 Xie Meihua received the Bachelor's Degree and Master's Degree in applied mathematics in 1998 and 2001 respectively from the National University of Defense Technology. Now, she is a doctor candidate in system engineering of the National University of Defense Technology. She focuses on image processing and testing data processing.Tel:0731-4573260 Email:xmhdjh@163.com
  • 相关文献

参考文献11

二级参考文献79

  • 1赵荣椿.数字图象处理导论[M].西安:西北工业大学出版社,1996..
  • 2邹谋炎.反卷积和信号复原.中国科大研究生院(北京)教材[M].,1999..
  • 3You L.Kaveh M.Blind image restoration by anisotropic regularization[J]. IEEE Trans. Image Processing, 1999, 8(3): 396-407.
  • 4Malladi R, Sethian J A. Image processing, flows under min/max curvature and mean curvature [J].Graphical Models and Image Processing, 1996, 58(2): 127-141.
  • 5Malladi R, Sethian J, Vemuri B C. A fast level set based lgorithm for topology-independent shape modeling [J]. J. Mathematical Imaging and Vision, 1996, 6: 269-289.
  • 6Malladi R, Sethian J A, Vemuri B C. Shape modeling with front propagation [J]. IEEE Trans. PAMI,1995, 17(2): 158-175.
  • 7Marr D, Hildreth E. Theory of edge detection [C]. Proc. Roy. Soc. London Ser. B, 1980: 187-217.
  • 8Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variation problems [J]. Comm. Pure Appl. Math., 1989, 17: 577-585.
  • 9Nitzberg M, Shiota T. Nonlinear image filtering with edge and corner enhancement [J]. IEEE Trans.on PAMI, 1992, 14(8): 826-833.
  • 10Osher S, Rudln L I. Feature-oriented image enhancement using shock filters [J]. SIAM J. Numerical Analysis, 1990, 27(4): 919-940.

共引文献90

同被引文献64

引证文献7

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部