期刊文献+

基于数据挖掘的自适应入侵检测系统 被引量:1

The research of a adaptive framework for data mining based intrusion detection system
在线阅读 下载PDF
导出
摘要 基于数据挖掘技术的入侵检测技术是近年来研究的热点,然而,当前采用数据挖掘技术的入侵检测系统存在的一个主要弊端是当被保护的系统发生了一些变化或进行了一定程度的调整后,误报率会明显提高.本文提出了一种自适应入侵检测系统框架,该框架能够自适应的维护正常规则集,并且在不牺牲检测性能的情况下解决规则的重新计算问题,从而使正常行为轮廓中的规则可以不断更新,加入新规则,删除旧规则,并修改已有的规则的支持度和置信度,从而有效地解决了基于数据挖掘技术入侵检测系统规则集的及时更新问题. Intrusion detection system is an emerging and promising security measure, which is to be against unauthorized internal intrusion and as effective protection against hackers in addition to firewall. Data mining methods have been used to build automatic intrusion detection systems based on anomaly detection. The goal is to characterize the normal system activities with a profile by applying mining algorithms to audit data so that abnormal intrusive activities can be detected by comparing the current activities with the profile. A major difficulty of any anomaly-based intrusion detection system is that patterns of normal behavior changed over time and the system must be retrained. IDS must be able to adapt to these changes,and be able to distinguish these changes in normal behavior from intrusive behavior. The paper describes a framework for an adaptive anomaly detection system that utilizes dynamic association rule mining.
出处 《西安工业学院学报》 2005年第2期122-125,共4页 Journal of Xi'an Institute of Technology
关键词 数据挖掘 入侵检测 关联规则 自适应 网络安全 data mining intrusion detection association rules network security adaptive
作者简介 高翔(1974-),男,西北工业大学讲师,博士,主要研究方向为计算机软件。
  • 相关文献

参考文献6

二级参考文献13

  • 1LeeW.A Data Mining Framework for Constructing Features and Models for Intrusion Detection System: [PhD thesis]. New York: Columbia University, 1999, 22-26.http://www, cs. columbia, edu/-wenke/.,.
  • 2LeeW StolfoSJ.Data Mining Approaches for Intrusion Detection. In: Proceedings of the 7th USENIX Security Symposium, San Antonio:. 1998, 6-9.http://www, cs. columbia, edu/-wenke/.,.
  • 3[1]A.K. Ghosh, A.Schwartzbard, M.Schatz.Using program behavior profiles for intrusion detection. In Proceedings of the SANS Intrusion Detection Workshop.
  • 4http: //www. icsa. net/services/consortia/intrusion/intrusion. pdf.
  • 5http: //lib -www. larl. gov/la- pubs/00416750. pdf.
  • 6Han J,Proc of the 21st International Confer-ence on Very L arge Databases,1995年,420页
  • 7Han Jiawei,Proc of 1998 Intl Conf on Knowledge Discovery and Data Mining,1998年
  • 8Han Jiawei,Proc of the 21st Intl Conf on VLDB,1995年,420页
  • 9商正俊,硕士学位论文,1998年
  • 10樊爱华,计算机研究与发展,1995年,33卷,5期,369页

共引文献98

同被引文献1

  • 1Wenke Lee,Salvatore J. Stolfo,Kui W. Mok. Adaptive Intrusion Detection: A Data Mining Approach[J] 2000,Artificial Intelligence Review(6):533~567

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部