期刊文献+

一种基于随机Hough变换的椭圆检测算法研究 被引量:15

An Improved Algorithm for Ellipses Detection Based on Randomizea Hough Transform
原文传递
导出
摘要 提出了一种有效的基于随机Hough变换的椭圆检测算法(RED)。该算法首先在图像中随机选择三个边缘点,并分别以这三个点为中心选取相同大小的窗口。利用最小二乘法对这三个窗口中的所有边缘点进行椭圆拟合,然后在图像中随机选取第四个边缘点,以判断图像中是否存在一个可能的椭圆。在找到一个可能的椭圆后,通过证据收集以进一步验证这个可能的椭圆是否真实存在。仿真实验和实际图像的实验表明本文算法比其它的算法具有速度快和精度高的优点。 In this paper, a randomized Hough transform algorithm for ellipses detection (RED) is presented. This algorithm firstly selects three edge pixels randomly in the image , and takes them as the centers of three windows with the same size. The least square method is used to fit all the edge points in these three windows, then the fourth edge pixel in the image is randomly selected to judge whether a possible ellipse exists in the image. After a possible ellipse being found, a verification process is applied to further determine whether the possible ellipse is a true one or not . Some synthetic images and realistic images have been tested by the experiments. Experimental results demonstrate that the proposed algorithm is faster and more accurate than other methods.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2005年第4期459-464,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60475023)
关键词 圆形特征 椭圆 检测 随机 二乘法 HOUGH变换 Circular Feature, Ellipse, Detection, Randomized, Least Square, Hough Transform
作者简介 李良福:1977年生,博士研究生,主要研究方向为计算机视觉、模式识别、机器人控制等。E-mamlongford@xjtu.edu.cn 冯祖仁,男,1953年生,教授,博士生导师,主要研究方向为机器人控制,多智能体系等,系统工程等。 贺凯良,男,1981年生,硕士研究生,主要研究方向为模式识别,图像处理,机器人视觉等。
  • 相关文献

参考文献10

  • 1Yamaguchi N, Mizoguchi H. Robot Vision to Recognize Both Face and Object for Human-Robot Ball Playing. In: Proc of theIEEE/ASME International Conference on Advanced Intelligent Mechatronics. Kobe, Japan, 2003, II : 999-1004.
  • 2Adorni G, Cagnoni S, Mordonini M. I.andmark-Based Robot Self-Localization; A Case Study for the RoboCup Goal-Keeper.In: Proc of the International Conference on Information Intelligence and Systems. Washington, USA, 1999, 164-171.
  • 3Hough P V C. Method and Means for Recognizing Complex Patterns. USA, Patent. D10, 3069654. 1962.
  • 4Chen T C, Chung K L. An Efficient Randomized Algorithm for Detecting Circles. Computer Vision and Image Understanding,2001, 83(2):172-191.
  • 5Cheng Z G, Liu Y C. Efficient Technique for Ellipse Detection Using Restricted Randomized Hough Transform. In: Proc of the International Conference on Information Technology: Coding and Computing. Las Vegas, USA, 2004, II : 714--718.
  • 6McLaughlin R A. Randomized Hough Transform: Better Ellipse Detection. In: Proc of the IEEE TENCON Digital Signal Processing Applications. Perth, Australia, 1996, I : 409-414.
  • 7McLaughlin R A. Randomized Hough Transform: Improved Ellipse Detection with Comparison. Pattern Recognition Letters,1998, 19(3):299-305.
  • 8Sheu H T. Chen H Y, Hu W C. Consistent Symmetric Axis Method for Robust Detection of Ellipses. IEE Proceedings on Vision, Image and Signal Processing, 1997, 144(6): 332-338.
  • 9Halir R, Flusser J. Numerically Stable Direct I.east Squares Fitting of Ellipses. In: Proc of the 6th International Conference inCentral Europe on Computer Graphics and Visualization. Plzeo,Czech Republic, 1998, 125-132.
  • 10Fitzgibbon A, Pilu M, Fisher R B. Direct Least Square Fitting of Ellipses. IEEE Trans on Pattern Analysis and Machine Intelligence, 1999, 21(5): 476-480.

同被引文献125

引证文献15

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部