摘要
在具有一致正规结构且其范数是一致Gateaux可微的Banach空间中,研究了Reich提出的公开问题.在给渐近非扩张映象作更适当的假设下,对Reich的公开问题给出了一个肯定的答复.所得结果在下列方面推广与改进了张石生教授的最新结果:(ⅰ)去掉了张教授的较强条件“迭代参数列收敛到零”;(ⅱ)去掉了张教授的较强假设“渐近非扩张映象有不动点”;(ⅲ)也去掉了张教授的较强条件“Banach压缩映象原理生成的序列强收敛”.而且,这些结果也推广与改进了先前由Reich,Shioji,Takahashi,Ueda及Wittmann等多位作者得到的相应结果.
The open question raised by Reich is studied in a Banach space with uniform normal structure, whose norm is uniformfly Gateaux differentiable. Under more suitable assumptions imposed on an asymptotically nonexpansive mapping, an affirmative answer to Reich's open question is given. The results presented extend and improve ZHANG Shi-sheng's recent ones in the following aspects: (i) ZHANG's stronger condition that the sequence of iterative parameters converges to zero is removed; ( ii ) ZHANG's stronger assumption that the asymptotically nonexpansive mapping has a fixed point is removed; ( iii ) ZHANG's stronger condition that the sequence generated by the Banach Contraction Principle is strongly convergent is also removed. Moreover, these also extend and improve the corresponding ones obtained previously by several authors including Reich, Shioji, Takahashi, Ueda and Wittmann.
出处
《应用数学和力学》
EI
CSCD
北大核心
2005年第9期1097-1104,共8页
Applied Mathematics and Mechanics
基金
高等学校优秀青年教师教学和科研奖励基金资助项目
上海市曙光计划基金资助项目
关键词
渐近非扩张映象
不动点
一致正规结构
一致Gateaux可微范数
迭代逼近
asymptotically nonexpansive mapping
fixed point
uniform normal structure
uniformly Gateaux differentiable norm
iterative approximation
作者简介
曾六川(1965-),男,湖南邵东人,教授,博士,博士生导师(E-mail:zenglc@hotmail.com).