期刊文献+

An Ultra-Broadband Single-Polarization Single-Mode Photonic Crystal Fibre 被引量:2

An Ultra-Broadband Single-Polarization Single-Mode Photonic Crystal Fibre
在线阅读 下载PDF
导出
摘要 An ultra broadband single-polarization single-mode (SPSM) photonic crystal fibre (PCF) is proposed and analysed by using the plane-wave expansion method and the beam propagation method. Numerical results demonstrate that the SPSM wavelength region nearly at 580 nm in width from 1. 461μm to 2.041μm is obtained in this PCF. The start wavelength of the SPSM region is close to the hole pitch, and the width of the SPSM region increases with the increasing hole pitch. Effects of dopant concentration on SPSM properties are investigated. The confinement loss decreases and the width of SPSM region widens slightly with the increasing dopant concentration. These results offer a new possibility of fabricating active doped SPSM PCFs with high performance that is crucial for improving the performance of linearly polarized fibre lasers. An ultra broadband single-polarization single-mode (SPSM) photonic crystal fibre (PCF) is proposed and analysed by using the plane-wave expansion method and the beam propagation method. Numerical results demonstrate that the SPSM wavelength region nearly at 580 nm in width from 1. 461μm to 2.041μm is obtained in this PCF. The start wavelength of the SPSM region is close to the hole pitch, and the width of the SPSM region increases with the increasing hole pitch. Effects of dopant concentration on SPSM properties are investigated. The confinement loss decreases and the width of SPSM region widens slightly with the increasing dopant concentration. These results offer a new possibility of fabricating active doped SPSM PCFs with high performance that is crucial for improving the performance of linearly polarized fibre lasers.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2005年第9期2302-2304,共3页 中国物理快报(英文版)
关键词 OPTICAL FIBER OPERATION OPTICAL FIBER OPERATION
作者简介 Email: lousq@163.com
  • 相关文献

参考文献15

  • 1Ortigosa.Blanch A,Knight J C,Wadsworth W J,Arriaga B,Mangan B J,Birks T A and Russell P S J 2000 opt.Lett.251325.
  • 2Hansen T P, Broeng J, Libori S, Knudsen E, Bjarklev A,Jensen J R and Simonsen H 2001 IEEE Photon. Technol.Lett. 13 588.
  • 3Suzuki K, Kubota H, Kawanishi S, Tanaka M and Fujita M 2001 Electron. Lett. 37 1399.
  • 4Okamoto K 1984 Appl. Opt. 23 2638.
  • 5Chiang K S 1989 J. Lightwave Technol. 7 436.
  • 6Lou S Q, Ren G B, Yan F P and Jian S S 2005 Acta Phys.Sin. 54 1229 (in Chinese).
  • 7Steel M J and Osgood P M 2001 Opt. Lett. 26 229.
  • 8Kawakami S 1974 IEEE J. Quantum Electron. 10 879.
  • 9Guo S and Albin S 2003 Opt. Express 11 167.
  • 10Messerly M J, Onstott J R and Mikkelson RC 1991 J. Lightwave Technol. 9 817.

同被引文献7

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部