期刊文献+

组份成分分布规律对功能梯度防护装甲动态响应的影响 被引量:3

EFFECT OF GRADIENT DISTRIBUTION OF THE COMPOSITION ON DYNAMIC RESPONSE OF FUNCTIONALLY GRADIENT COMPOSITES PLATES UNDER IMPULSIVE LOAD
在线阅读 下载PDF
导出
摘要 利用数值模拟方法研究了在冲击载荷作用下组份成分对称分布的功能梯度板的动态响应。梯度板材料为陶瓷颗粒增强的铝基复合材料(MMC)。增强相体积分数随厚度服从指数定律连续分布,在对称分布条件下增强相体积分数分别在梯度板的前后表面达到最大值。结果显示,在这种功能梯度装甲板中,应力波的传播非常复杂,弹性和粘塑性波耦合在一起,反射拉伸波和卸载波的大小依赖于组份成分沿厚度的分布;等效塑性应变的幅值、动能、弹性应变能及耗散能随时间的变化规律与功能梯度材料组份成分沿厚度的变化密切相关。这些因素对强冲击载荷作用下功能梯度板的优化设计非常重要。 The dynamic response of functionally graded plates was simulated under impulsive load, These plates are supposed to be metal matrix composites (MMC) made from aluminum alloy reinforced by ceramic particles. The reinforcement volume fraction varies continuously along thickness following a power law, The reinforcement volume fraction reaches its maximum at both front surface and back surface with the symmetric distribution. The results show that the stress wave propagations in such gradient structures are very complex. The elastic and viscoplastic waves are coupled together and the amplitude of reflected tension wave and the unloading wave have very close relation with the gradient distribution of the composition. The distributions of equivalent plastic strain, dissipated, kinetic and elastic strain energies are all dependent on the gradient distribution of the composition. All these play a very important role in optimum design of the functionally graded structures under the impact load.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2005年第4期58-67,共10页 Acta Materiae Compositae Sinica
基金 国防基础科研项目(K1801060811)
关键词 功能梯度板 金属基复合材料 颗粒增强 冲击载荷 动态响应 functionally gradient composites plates metal matrix composites particle reinforcement impulsive load dynamic response
作者简介 李玉龙,博士,教授,研究方向为冲击动力学、复合材料力学 E-mail:liyulong@nwpu.edu.cn
  • 相关文献

参考文献23

  • 1张佐光,霍刚,张大兴,梁志勇,仲伟虹.纤维复合材料的弹道吸能研究[J].复合材料学报,1998,15(2):74-81. 被引量:46
  • 2Huang J, Fadel G M, Blouin V Y, et al. Bi-objective optimi zation design of functionally gradient materials [J]. Materials & Design, 2002, 23(7): 657-666.
  • 3Ootao Y, Kawamura R, Tanigawa Y, et al. Optimization of material composition of nonhomogeneous hollow sphere for thermal stress relaxation making use of neural network [J].Computer Methods in Applied Mechanics and Engineering,1999, 180(1-2): 185-201.
  • 4Ootao Y, Tanigawa Y, Nakamura T. Optimization of material composition of FGM hollow circular cylinder under thermal loading: A neural network approach [J]. Composites Part Bi Engineering, 1999, 30(4): 415-422.
  • 5Cho J R, Ha D Y. Volume fraction optimization for minimizing thermal stress in Ni-Al2O3 functionally graded materials [J]. Materials Science and Engineering A, 2002,334(1-2): 147-155.
  • 6Cho J R, Ha D Y. Optimal tailoring of 2D volume-fraction distributions for heat-resisting functionally graded materials using FDM [J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(29-30): 3195-3211.
  • 7Nadeau J C, Ferri M. Microstructural optimization of a functionally graded transversely isotropic layer [J]. Mechanics of Materials, 1999, 31(10): 637-651.
  • 8Li Y, Ramesh K T, Chin E S C. The compressive viscoplas tic response of an A359/SiCP metal matrix composite and of the A359 aluminum alloy matrix [J]. International Journal of Solids and Structures, 1999, 37(51): 7547-7562.
  • 9Li Y, Ramesh K T, Chin E S C. Viscoplastic deformations and compressive damage in an A359/SiCP metal-matrix com posite [J]. Acta Materialia, 2000, 48(7): 1563-1573.
  • 10Prangnell P B, Roberts S M, Withers P J. The effect of particale distribution on damage formation in particulate rein forced metal matrix composites deformed in compression [J].Materials Science and Engineering A, 1996, 220(1-2) : 41-56.

二级参考文献20

  • 1羡梦梅,曲英章.非金属材料动态性能研究介绍[J].兵器材料科学与工程,1990,13(1):43-47. 被引量:3
  • 2[1]Vinson J R, Zukas J A. On the ballistic impact of textile body armor [J]. JApplMech , 1975, 42(6): 263-268.
  • 3[2]Leech C M, Hearle J W S, Mansell J. A variational model for the arrest of projectiles by woven cloth and nets [J]. J Textile Ist, 1979, 70(11): 469-478.
  • 4[3]Laible R C. Ballistic materials and penetration mechanics [M]. Amsterdam: Elsevier Scientific Publishing Company, 1980. 278 -280.
  • 5[4]Shim V P, Tan V B C, Tay T E. Modeling deformation and damage characteristics of woven fabric under small projectile im pact [J]. Int J Impact Engng , 1995, 16(4): 585-605.
  • 6[5]Cunniff P M. An analysis of the system effects in woven fabrics under ballistic impact [J]. Textile Res J, 1992, 62(9): 495- 509.
  • 7[6]Taylor W J, Vinson J R. Modeling ballistic impact into flexible materials [J]. AIAAJ,1990, 28(2): 2098-2103.
  • 8[7]Parga-Landa B, Hernandez-Olivares F. An analytical model to predict impact behaviour of soft armours [J]. Int J Impact En gng, 1995, 16(3): 455-466.
  • 9[8]Chocron-Benloulo I S, Rodriguez J, Sauchez Galvez V. A simple analytical model to simulate textile fabric ballistic behavior [J]. Textile Res J, 1997, 67(7): 520-528.
  • 10[9]Sierakowski R L, Chaturvedi S K. Dynamic loading and characterization of fiber-reinforced composites [M]. New York: John Wiley & Sons Inc, 1997. 17.

共引文献62

同被引文献52

引证文献3

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部