期刊文献+

正态变差系数的经典限 被引量:5

Classical Limits for the Coefficient of Variation for the Normal Distribution
在线阅读 下载PDF
导出
摘要 本文推导了正态变差系数的经典精确限.为了满足工程实践的需要,利用Odeh和Owen的计算方法及Brent算法,给出了高精度的可手算的近似限.对不同的置信度γ及样本大小n=1(1)30,40,60,120,样本变差系数(?)=0.01(0.01)0.20,计算了正态变差系数的经典精确限表.本文指出,当n≤8,(?)≤0.20时,经典精确限Cu略大于Fiducial精确限Cu,F.当n>8.(?)≤0.20时.Cu—Cu,F<5×10^(-6). The exact classical limits for the coefficient of variation c for the normal distribution are derived. The hand-calculating approximated classical limits for c having high accuracy are, given to meet practical engineering needs. Using Odeh and Owen's computational method and Brent's algorithm, the tables for the r-upper exact classical limits of coefficient of variation for normal distribution are calculated for the different confidence coefficient r, the sample size n=1(1)30, 40, 60, 120, the sample coefficient of variation e=0.01(0.01)0.20. It is shown that if n<8,e<0.2, then the r~ upper exact classical limits cu for c are slightly higher than the exact fiducial limits cu,F, for c, if n>8, e<0.2, then cu-cu,F<5X10^(-6)
作者 周源泉
出处 《应用数学和力学》 EI CSCD 北大核心 1989年第5期411-418,共8页 Applied Mathematics and Mechanics
  • 相关文献

参考文献2

  • 1周源泉,电子学报,1986年,14卷,2期,46页
  • 2周源泉,机械工程学报,1986年,22卷,3期,67页

同被引文献23

  • 1杨运清.两总体变异系数差异的显著性检验[J].黄牛杂志,1993,19(1):19-20. 被引量:3
  • 2朱炜.小样本下正态分布可靠度评估方法[J].质量与可靠性,2006(6):17-19. 被引量:1
  • 3唐德钧.Weibull分布变差系数的置信上限.应用概率统计,1989,(3):276-282.
  • 4周源泉.正态变差系数的区间估计[J].机械工程学报,1986(3):67-74.
  • 5Koopman L H,owen D B & Rosenblat J T. Confidence intervals for the efficient of variation for the normal and lognormal distribution[J].{H}BIOMETRIKA,1964,(51):25-32.
  • 6周源泉.正态变差系数的区间统计[J]{H}机械工程学报,1986(22):67-74.
  • 7Lawless J F. Statistical models and methods for lifetime data,2rd.ed[M].Hoboken N J:Wiley,2003.
  • 8Fisher R A. Inverse probability[J].Proc of the Cambridge Philosophical Society,1930,(26):528-535.
  • 9Jeffreys H. Theory of probability,3rd.ed[M].London:Oxford Univ Press,1961.
  • 10周源泉;翁朝曦.可靠性评定[M]{H}北京:科学出版社,1990.

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部