摘要
本文推导了正态变差系数的经典精确限.为了满足工程实践的需要,利用Odeh和Owen的计算方法及Brent算法,给出了高精度的可手算的近似限.对不同的置信度γ及样本大小n=1(1)30,40,60,120,样本变差系数(?)=0.01(0.01)0.20,计算了正态变差系数的经典精确限表.本文指出,当n≤8,(?)≤0.20时,经典精确限Cu略大于Fiducial精确限Cu,F.当n>8.(?)≤0.20时.Cu—Cu,F<5×10^(-6).
The exact classical limits for the coefficient of variation c for the normal distribution are derived. The hand-calculating approximated classical limits for c having high accuracy are, given to meet practical engineering needs. Using Odeh and Owen's computational method and Brent's algorithm, the tables for the r-upper exact classical limits of coefficient of variation for normal distribution are calculated for the different confidence coefficient r, the sample size n=1(1)30, 40, 60, 120, the sample coefficient of variation e=0.01(0.01)0.20. It is shown that if n<8,e<0.2, then the r~ upper exact classical limits cu for c are slightly higher than the exact fiducial limits cu,F, for c, if n>8, e<0.2, then cu-cu,F<5X10^(-6)
出处
《应用数学和力学》
EI
CSCD
北大核心
1989年第5期411-418,共8页
Applied Mathematics and Mechanics