摘要
本文用水深平均雷诺方程和水深平均k-ε方程,模拟在浅水宽阔水域中有限长直立式圆柱的绕流.在水深平均后的方程中,由于水深不均匀性所增加的修正源项,改善了控制方程的可解性,保证了在整个计算过程中k和ε值非负.用结构块贴体坐标系方法生成的OC型网格,为计算提供了良好网格条件.用有限差分法和余量校正法进行离散和计算.本文计算了雷诺数为1200的圆柱绕流,与Nagata的实验结果有很好的一致性.作为尝试,本文还计算了雷诺数为105的圆柱绕流,得到了很好的计算结果.
his paper gives the method of numerical simulation of the flow field around an erect circular cylinder of finite length by using depth-averaged Reynolds equations and depth-averaged k-ε turbulent model. The influence of nonuniform water depth is taken into consideration in the depth-averaged RANS equations by dispersion coefficient Γ, and in the depth-averaged k-ε equations by Gku and Gεu which keeps k and ε always positive during the calculation processes. The flow field around a circular cylinder with Reynolds number 1200 is computed. The comparison of the calculated results with the measured ones of Nagata shows good agreement. The case of Reynolds number up to 105 is tried to compute with good flow configuration.
出处
《上海大学学报(自然科学版)》
CAS
CSCD
1995年第3期259-268,共10页
Journal of Shanghai University:Natural Science Edition
关键词
雷诺方程
水深
k-ε方程
圆柱绕流
有限差分法
depth-averaged RANS
depth-averaged k-εturbulence model
flow field around a circular cylinder
finite difference method