期刊文献+

基于排序FP-树的频繁模式高效挖掘算法 被引量:13

An Efficient Frequent Patterns Mining Algorithm Based on Sorted FP-Tree
在线阅读 下载PDF
导出
摘要 FP-growth算法是目前较高效的频繁模式挖掘算法之一。在FP-growth算法中,FP-树及条件FP-树的构造和遍历占了算法绝大部分的时间,如果能减少这方面的时间,则有望进一步改善算法的效率。本文给出了一个频繁模式挖掘算法SFP-growth。算法通过将FP-树有序化及采用高效排序算法等措施来提高FP-树构造的效率,从而使算法达到较高的效率。实验结果表明,SFP-growth是一个高效的频繁模式挖掘算法,其性能优于Apriori、Eclat和FP-growtn算法。 FP-growth is a high performance algorithm for mining frequent patterns. In FP-growth algorithm, it costs most of the time in constructing and traversing the FP-tree and conditional FP-tree. If we can reduce the time con- suming in tree construction and traversing, then the performance can be improved. In this paper, an improved algo- rithm, SFP-growth, is presented. The algorithm adopts sorted FP-trees to store the main information of the transac- tions. It also uses an efficient sorting algorithm and other techniques in the construction of trees. The experimental result shows that SFP-growth is an efficient algorithm, it outperforms Apriori, Eclat and FP-growth algorithm.
出处 《计算机科学》 CSCD 北大核心 2005年第4期31-33,共3页 Computer Science
基金 国家自然科学基金(90104021 60173017)
关键词 FP-树 挖掘算法 频繁模式 FP-GROWTH算法 高效 APRIORI 排序算法 有序化 时间 构造 遍历 Data mining Association rules Frequent patterns Sorted FP-tree
  • 相关文献

参考文献7

  • 1Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large database. In: P Buneman, S Jajodia eds. Proc. of 1993 ACM SIGMOD Conf. on Management of Data. Washington DC: ACM Press, 1993. 207~216
  • 2Agrawal R, Srikant R. Fast algorithms for mining association rules. In: J Bocca, M Jarke, C Zaniolo eds. Proc. of the 20th Int'l Conf. on Very Large DataBases (VLDB'94). Santiago: Morgan Kaufmann, 1994. 487~499
  • 3Zaki M, Parthasarathy S, Ogihara M, Li W. New algorithms for fast discovery of association rules. In: D Heckerman, et al eds.Proc of the Third Intl. Conf. on Knowledge Discovery and Data Mining (KDD'97). AAAI Press, 1997. 283
  • 4Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation. In: M Dunham, J Naughton, W Chen eds. Proc. of 2000 ACM-SIGMOD Int'l Conf on Management of Data (SIGMOD'00). Dallas, TX, New York:ACM Press, 2000. 1~12
  • 5http://fuzzy. cs. uni-magdeburg. de/~borgelt/
  • 6http://www. cs. helsinki. fi/u/goethals/
  • 7http://www. ics. uci. edu/~mlearn/MLRepository. html

同被引文献71

引证文献13

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部