期刊文献+

基于扩展的Kanade-Lucas的背景运动参数估计 被引量:3

Background motion model parameters estimation based on extended Kanade-Lucas tracker
在线阅读 下载PDF
导出
摘要 复杂背景下运动分析首先需要进行背景运动参数估计。提出一种采用KLT算子并结合Kanade-Lucas跟踪算法来计算帧间特征点的匹配,然后利用帧间特征点间的匹配关系采用RANSAC算法来进行背景运动参数估计。实验结果证明这种方法具有计算量小,能实时实现并提供可靠的背景运动模型估计。 Background affine model parameters estimation is a key problems in image registration between frames. Extended Kanade-Lucas tracker and RANSAC algorithm were combined to solve the background affine model parameters. Background features were detected using outlier voting frame. As solving an affine model only need three corresponding points, the algorithm can run in real time and generate reliable results.
出处 《计算机应用》 CSCD 北大核心 2005年第8期1946-1947,共2页 journal of Computer Applications
关键词 KLT算子 特征点 图像匹配 背景运动参数估计 Affine模型 <Keyword>kanade-lucas tracker feature point image registration background motion model parameters estimation Affine model
  • 相关文献

参考文献6

  • 1BIRCHFIELD S. KLT: An Implementation of the Kanade-Lucas-Tomasi Feature Tracker [ EB/OL]. http://vision. stanford. edu/~birch/klt/, 2005 - 01.
  • 2LINKAOPING. Tracking by Image Processing in a RealTime System[D]. 2003.
  • 3JEAN-YVES BOUGUET. Pyramidal Implementation of the Lucas Kanade Feature Tracker[ EB/OL]. http://graphics. stanford. edu/courses/cs448a - 00 - fall/bouget00. pdf, 2005 - 01.
  • 4Computer Vision Laboratory . Wallenberg laboratory on Information Technology and Autonomous Systems[ EB/OL]. http://www. isy.liu. se/cvl/Research/Robot/WITAS/index. html, 2005 -01.
  • 5SHI J, TOMASI C. Good features to track[ A]. IEEE Conference on Computer Vision and Pattern Recognition[ C]. 1994.593 -600.
  • 6张迁,刘政凯,庞彦伟,李威.基于SUSAN算法的航空影像的自动配准[J].测绘学报,2003,32(3):245-250. 被引量:75

二级参考文献12

  • 1LI Hui, et al. A Contour-Based Approach to Multisensor Image Registeation[J]. IEEE Transaction on Image Processing, 1995,4(3).
  • 2PRATT W. Digital Image Processing [ M ]. NewYork: Wiley, 1991.
  • 3HARALICK R, et al. Computer and Robot Vision[ M]. Massachusetts: Addison-Wesley, 1993.
  • 4ZHENG Q F,CHELLAPPA R. A Computational Vision Approach to Image Registration[J]. IEEE Transaction on Image Processing, 1993,2(3).
  • 5HSU C T, BEUKER R A. Multiresolution Feature-Based Image Registration [ A ]. Proceedings of SPIE[ C]. Perth: [s n ],2000.
  • 6SMITH S M, BRADY J M. SUSAN-A New Approach to Low Level Image Processing[J]. Int Journal of Computer Vision, 1997,23( 1 ).
  • 7MORAVEC H P. Towards Automatic Visual Obstacle Avoidance[ A]. In Proceeding of International Joint Conference on Artificial Intelligence[ C ]. Cambfige: [ s n ], 1977.
  • 8MORAVEC H P. Visual Mapping by a Robot Rover[ A]. In Proceeding of the 6th International Joint Conference on Artificial Intelligence [ C ]. San Francisco:[s n], 1979.
  • 9HARRIS C G, STEPHENS M. A Combined Corner and Edge Detector[ A]. In 4th Alvey Vision Conference[ C ]. Manchester: [ s n ], 1988.
  • 10FOSTNER W, GOLCH E. A Fast Operator for Detection and Precision Location of Distinct Points,Corners and Centre of Circular Features[A]. In ISPRS intercommunication Workshop [ C ]. Bern: [ s n ], 1987.

共引文献74

同被引文献13

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部