摘要
将混沌优化和遗传算法结合起来,提出了混沌遗传算法(CGA,Chaos Genetic Algorithm),并将其应用于函数优化问题的求解。通过在种群进化的不同阶段引入混沌优化操作,大大提升了遗传算法的整体性能。实验结果表明,与标准遗传算法(SGA)相比,该算法能更有效地求得全局最优解,具有更快的收敛速度。
By combining chaos optimization and genetic algorithm, the Chaos Genetic Algorithm (CGA) is presented, which is applied in solving the function optimization problem. The chaos optimization is introduced in different phase of population evolution, which improves the total performance of genetic algorithm greatly. The experiment results show that CGA can get global optimum solution more efficiently and has higher convergence rate compared with Standard Genetic Algorithm (SGA).
出处
《计算机与数字工程》
2005年第7期68-70,共3页
Computer & Digital Engineering
关键词
混沌
遗传算法
函数优化
chaos,genetic algorithm,function optimization