期刊文献+

基于贝叶斯理论和在线学习支持向量机的短期负荷预测 被引量:37

BASED ON BAYESIAN THEORY AND ONLINE LEARNING SVM FOR SHORT TERM LOAD FORECASTING
在线阅读 下载PDF
导出
摘要 该文将贝叶斯理论用于短期负荷预测(STLF)中输入特征的自适应选取。该理论将所有能够获得的信息,包括样本信息和先验知识结合在一起加以利用,不但避免了过拟合问题,而且简化了预测模型。文中同时建立了基于支持向量机(SVM)在线学习的短期负荷预测模型。在充分利用SVM解的稀疏性并结合KKT条件的基础上,以递增和递减算法可直接得到新的回归函数而无需重新训练,从而提高了一般SVM方法进行负荷预测的计算速度。多个实际系统的预测算例表明了该方法在预测精度和预测速度方面的有效性。 The paper adopts Bayesian theory to input feature selection for short term load forecasting (STLF). It makes use of the information from both samples and prior knowledge. In this way, not only can the over-fitting problem be effectively solved but also the model of forecasting can be simplified. Simultaneously, an online learning support vector machine (SVM) method for short-term load forecasting model is presented here. The method comprises incremental algorithm and decrement algorithm, which efficiently updates a trained regression function whenever a sample is added to or removed from the training set. So it is favorable for applications like online learning or leave-one-out cross-validation. The practical examples show that online learning support vector machine with input feature selection based on Bayesian theory outperforms other methods in both forecasting accuracy and computing speed.
机构地区 西安交通大学
出处 《中国电机工程学报》 EI CSCD 北大核心 2005年第13期8-13,共6页 Proceedings of the CSEE
基金 国家自然科学基金重点项目(59937150 60373106)。~~
关键词 电力系统 短期负荷预测 支持向量机 贝叶斯理论 特征选取 在线学习 Power system Short term load forecasting (STLF) Support vector machine Bayesian theory Feature selection Online learning
  • 相关文献

参考文献14

二级参考文献68

  • 1牛东晓,陈志业.交叉灰色预测法预测发电设备可靠性指标[J].中国电机工程学报,1993,13(4):25-30. 被引量:11
  • 2陈志业,牛东晓,张英怀,谢宏,齐喜全.电网短期电力负荷预测系统的研究[J].中国电机工程学报,1995,15(1):30-35. 被引量:35
  • 3[1]T. Masters ,Neural,Novel& Hybird Algorithms for Tim Series Pre-diction[M], John Wiley & Sons. Inc., 1995.
  • 4[2]A. D. Papalexopoulos and T. C. Hesterberg , A regression based approach to short term system load forecasting[C], Proceedings of 1989 PICA Conference , 1989:414-423,
  • 5[3]K. L. Ho , Y. Y. Hsu , C. F. Chen , T. E. Lee , C. C. Liang , T . S. Lai , and K. K. Chen , Short term load foreasting of Taiwan power system using a knowledge-based expert system[J], IEEE Tans.on Power Systems , 1990,5(4):1214-1221.
  • 6[4]A.M. Lanchlan , An improved novelty criterion for resource allocating networks[C] , IEE ,Artifical Neural Networks , Conference Publication , 1997:440:48-52
  • 7[5]D.Srinivasan, S.S.Tan , C.S.Chang and E.K.Chan ,Practical im-plentation of a hybrid fuzzy neural network for one-day-ahead load forecasting[J], IEE Proc.-Gener. Transm,1998.11(6):687-692.
  • 8[6]V.N. Vapnik ,The nature of statistical learning theory[M], New York: Springer, 1999.
  • 9[7]A. Smola and B. Scholkopf , A tutorial on support vector regression[M], NeuroCOLT Tech. Rep. TR 1998-030, Royal Holloway College , London , U.K., 1998.
  • 10[8]J.C. Platt , Fast training of support vector machines using sequential optimization , in B. Scholkopf , C. Burges , and A. Smola. Advances in kernel methods: support vector machines[M], Cambridge, MA: MIT Press, 1998.

共引文献704

同被引文献393

引证文献37

二级引证文献750

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部