期刊文献+

纳米金属氧化物粉体爆轰合成 被引量:5

Detonation synthesis for nano-metallic oxide powders
在线阅读 下载PDF
导出
摘要 对含能前驱体如硝酸盐和控制炸药装药的情况下爆轰反应生成纳米金属氧化物进行了探索研究.采用透射电子显微镜表征了爆轰产物.氧化物爆轰产物中的碳微粒即爆轰灰在某种意义上反映了晶型生长机制.通过爆轰合成技术产生的氧化物肯定了纳米粉体爆轰合成技术的有效性.介绍了纳米氧化铝的制备,测试了氧化铝的微观结构和分布状态.结果表明:通过硝酸盐炸药的爆轰产生了纳米尺度的金属氧化物,球形氧化铝粒径主要分布于20~50 nm之间.该方面研究工作的开展也将促进在细微观尺度上的工业炸药设计和爆轰理论的发展. The formation of metallic nanooxides via detonation reaction was investigated with respect to the presence of an energetic precursor, such as the metallic nitrate and the degree of confinement of the explosive charge. The detonation products were characterized by scanning electron microscopy. Nano-metallic oxides with diameters from 10 to 50 nm and a variety of morphologies were found. Carbon particles in the oxides, the grey detonation soot, indicate a catalytic growth mechanism in a sense. The detonation synthesis technique is one of the methods of producing nano-metallic oxides. The oxides produced by this cheap method affirmed the validity of detonation synthesis of nano-size powders. This paper is concerned with the fabrication of alumina. The microstructure, distributions of the Al2O3 were determined. The results show that the nano-metallic oxides produced by detonation of nitrate explosives are between 20 to 50 nm. This investigation also promotes the design of commercial explosives and the development of detonation theory on a microscale.
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2005年第3期271-275,共5页 Explosion and Shock Waves
基金 国家自然科学基金项目(10172025 19972015) 辽宁省自然科学基金项目(2001101075)
关键词 爆炸力学 纳米粉 爆轰合成 氧化铝 炸药设计 微观机理 Alumina Carbon Detonation Explosions Fabrication Microstructure Nanostructured materials Nitrates Oxides Soot Synthesis (chemical)
  • 相关文献

参考文献15

  • 1Bukaemskii A A, Avramenko S S, Tarasova L S. Ultrafine a-Al2O3 explosive method of synthesis and properties[J]. Combustion, Explosion, and Shock Waves, 2002,38(4) :478-483.
  • 2Bukaemskii A A. Physical model of explosive synthesis of ultrafine aluminum oxide[J]. Combustion, Explosion,and Shock Waves, 2002,38(3):360-364.
  • 3Bukaemskii A A, Beloshapko A G. Explosive synthesis of ultradisperse aluminum oxide in an oxygen-containing medium[J]. Combustion, Explosion, and Shock Waves, 2001,37(5):594-599.
  • 4Webster T J, Siegel R W, Bizios R. Design and evaluation of nanophase alumina for orthopaedic/dental applications[J]. Nanostructured Materials, 1999,12 : 983- 986.
  • 5Tsvigunov A N, Frolova L A, Khotin V G. Detonation synthesis of cuprite with a cubic face-centered lattice (A Review) [J]. Glass and Ceramics, 2003,60 (9- 10) : 47- 350.
  • 6LU Yi, ZHU Zhen-ping , LIU Zhen-yu. Catalytic growth of carbon nanotubes through CHNO explosive detonation[J]. Carbon, 2004,42:361-370.
  • 7Polotai A V, Ragulya A V, Randall C A. Preparation and size effect in pure nanocrystalline barium titanate ceramics[J]. Ferroelectrics, 2003,268(1-4) :84-89.
  • 8Pilipenko N P, Konstantinova T E, Tokiy V V, et al. Peculiarities of zirconium hydroxide microwave drying process[J]. Functional materials,2002,9(3):545-548.
  • 9Horie Y. Mass Mixing and Nucleation and Growth of Chemical Reactions in Shock Compression of Power Mixtures[A]. Murr L E. Metallurgical and Materials Applications of Shock-wave and High-strain-rate Phenomena1995[C]. Elsevier Science Publishers B V, 1995.
  • 10Batsanov S S. Effects of Explosions on Materials[M]. New York: Springer, 1994.

二级参考文献4

共引文献2

同被引文献49

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部