期刊文献+

基于泛逻辑学的概率命题逻辑的研究与分析 被引量:3

Research and Analysis of Probability Logic Based on Universal Logics
在线阅读 下载PDF
导出
摘要 概率逻辑是不确定推理的一个重要逻辑基础,但其目前还不太完善.泛逻辑学是何华灿教授在探索各种不确定性问题求解中建立起来的一种新的柔性逻辑体系.理论上,概率逻辑仅是泛逻辑学的一个特例.在对目前比较典型的几种概率逻辑模型进行分析的基础上,基于命题泛逻辑学的思想和方法,指出了概率命题逻辑中存在的一些主要问题,探讨了解决这些问题的思路与方法. Probability logic is an important foundation for uncertainty reasoning. However, there is a lot more to do to make it perfect. Universal logics is a new flexible logic system established in the study of various nondeterministic problems. It is an abstraction for building concrete logic systems. Theoretically, probability logic is a special example of universal logics. In this paper, several classical models are analyzed, problems in these models are pointed out, and new methods to solve them based on universal logics are presented.
出处 《计算机研究与发展》 EI CSCD 北大核心 2005年第7期1204-1209,共6页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60273087) 北京市自然科学基金项目(4032009)
关键词 泛逻辑学 概率逻辑 不确定推理 universal logics probability logic uncertainty reasoning
  • 相关文献

参考文献8

  • 1王万森,何华灿.基于泛逻辑学的逻辑关系柔性化研究[J].软件学报,2005,16(5):754-760. 被引量:15
  • 2王万森,何华灿.基于泛逻辑学的柔性命题逻辑研究[J].小型微型计算机系统,2004,25(12):2116-2119. 被引量:6
  • 3P. Roeper, H. Leblanc. Probability Theory and Probability Logic. Toronto: University of Toronto Press Incorporated, 1999
  • 4N.J. Nilsson. Probabilistic logic. Artificial Intelligence, 1986,28(1): 71~81
  • 5I.R. Goodman, H. T. Nguyen, E. A. Walker. Conditional inference and logic for intelligent systems: A theory of measurefree conditioning. Amsterdam: North-Holland, 1991
  • 6D. Lewis. Probabilities of conditionals and conditional probabilities. Philosophy Review, 1976, 85(3): 297~315
  • 7I.R. Goodman, N. M. Gupta, H. T. Nguyen, et al.Conditional logic in expert systems. Amsterdam: North-Holland,1991
  • 8邓勇,刘琪,施文康.条件事件代数研究综述[J].计算机学报,2003,26(6):650-661. 被引量:9

二级参考文献18

  • 1王万森,何华灿.基于泛逻辑学的柔性命题逻辑研究[J].小型微型计算机系统,2004,25(12):2116-2119. 被引量:6
  • 2张文修.证据理论的随机集表示[J].模糊系统与数学,1995,9(1):1-6. 被引量:6
  • 3何华灿.论第二次逻辑学革命[A]..中国人工智能进展(2003)[C].北京:北京邮电大学出版社,2003.32-41.
  • 4Roeper P, Leblanc H. Probability Theory and Probability Logic. Toronto: University of Toronto Press, 1999.
  • 5Nilsson NJ. Probalistic logic. Artificial Intelligence, 1986,28:71-81.
  • 6Lewis D. Probabilities of conditionals and conditional probabilities. Philosophy Review, 1976,85(3):297-315.
  • 7Goodman IR, Ncuyen HT, Walker EA. Conditional Inference and Logic for Intelligent Systems: A Theory of Measure_Free Conditioning. Amsterdam North_Holland, 1991.
  • 8Goodman IR, Gupta NM, Ncuyen HT, Rogers GS. Conditional Logic in Expert Systems. Amsterdam North_Holland, 1991.
  • 9He Hua-can, Wang Hua, Liu Yong-huai et al.Universal logics principle[M].Beijing:Science Press, 2001.
  • 10Roeper P, Leblanc H. Probability theory and probability logic[M]. University of Toronto Press Incorporated, 1999.

共引文献22

同被引文献9

  • 1王万森,何华灿.基于泛逻辑学的柔性命题逻辑研究[J].小型微型计算机系统,2004,25(12):2116-2119. 被引量:6
  • 2王万森,何华灿.基于泛逻辑学的逻辑关系柔性化研究[J].软件学报,2005,16(5):754-760. 被引量:15
  • 3钟义信.机制主义:人工智能的统一理论[J].电子学报,2006,34(2):317-321. 被引量:17
  • 4He Huacan,et al.Princip of Universal Logics[M].China:Science Press,2006.
  • 5D Butnariu,E.P Klement,Triangular Norm-Based Measures and Games with Fuzzy Coalitions[M].Springer,1 edition,1993.
  • 6E P Klement,R Mesiar,E Pap.Triangular Norms[M].Dordrecht:Kluwer Academic Publishers,2000
  • 7He Huacan,Wang Hua, Liu Yonghuai,et al. Princip of Universal Logics [M]. China:Science Press, 2006.
  • 8Roeper P, Leblanc H. Probability theory and probability logic [M]. university of toronto press incorporated, 1999.
  • 9Klement E P, Mesiar R, Pap E. Triangular Norms. Dordrecht: Kluwer Academic Publishers, 2000.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部