期刊文献+

基于粗糙集-神经网络的污水参数软测量技术研究 被引量:5

Research of Soft Measure Technology Based on Rough Set-Artificial Neural Network for Wastewater Parameters
在线阅读 下载PDF
导出
摘要 采用粗糙集理论约简属性,在保留重要信息的前提下消除冗余信息,简化了神经网络结构,提高了网络训练速度。采用这种方法,用某城市污水处理厂的实际水质参数数据,建立了 SVI 基于粗糙集-神经网络的软测量模型。和未经粗糙集预处理的神经网络模型进行了比较,结果表明有粗糙集预处理后,不仅测量值的误差值更小,而且输入参数量从9个降至4个,大大降低了输入数据的维数,减少了神经网络的训练时间及训练步数,更有利于软测量模型的实用化。 The writer reduces the attributions of madel,and eliminates superfluous data by rough set,this result in simplification of the model structure and speedup of the training speed.By this method,the SVI soft measure model based on rough set using artificial neural network is established,using practical data of water quality parameters in some municipal wastewater treatment plant.The result indicates that the error is smaller when the rough set-artificial neural network model is used than isn't used,and the amount of the input parameters is reduced from 9 to 4.The dimensions of the input data are decreased greatly,and the training time and steps of the artificial neural network are reduced.
出处 《电气自动化》 北大核心 2005年第3期64-66,69,共4页 Electrical Automation
基金 国家"十五"小城镇科技发展重大项目(2003BA808A17)资助
关键词 粗糙集 人工神经网络 软测量 污水参数 rough set artificial neural network soft measure wastewater parameter
  • 相关文献

参考文献3

  • 1李海青 黄志饶.软测量技术原理及应用[M].北京:化学工业出版社,1999..
  • 2Z.Pawlak.Rough set[J].International Journal of Information and Computer Science,1982,11(5):341~356.
  • 3Swiniarski R, Hargis L. Rough sets as front end of neural-networks texture classifiers[J]. Neurocomputing 2001,36:85 - 102.

共引文献2

同被引文献37

  • 1邓洁英,陈月英,吴春芳,王雪萍.检测洗胃前后胃液pH值探讨有机磷中毒救治效果[J].中国实用护理杂志(下旬版),2005,21(2):17-17. 被引量:3
  • 2卿晓霞,余建平.软测量技术及其在污水处理系统中的应用[J].工业水处理,2005,25(3):13-16. 被引量:10
  • 3王剑伟.城市污水再用于火电厂循环冷却水的分析[J].内蒙古科技与经济,2005(18):92-93. 被引量:1
  • 4王娟,梅云霞.洗胃研究进展[J].现代生物医学进展,2006,6(9):116-118. 被引量:8
  • 5Tsai Y P,Ouyang C F,Wu M Y,etal.Effluent suspended solid control of cativated sludge process by fuzzy control approach.Water Environment Research,1996,68(5):1045~ 1053
  • 6Manesis S A.Intelligent control of wastewater treatment plants.Artificial Intelligent in Engineering,1998,12:275~281
  • 7Baeza J,Gabriel D.A distributed control system based on agent architecture for wastewater treatment.Computer-Aided Civil and Infrastructure Engineering,2002,(17):93~103
  • 8Comas J,Rodrigue-Roda I,Sànchez-Marrè M,et al.A knowledge-based approach to the deflocculation problem:Integrating on-line,off-line,and heuristic information.Water Research,2003,37 (10):2371~2387
  • 9Fayyad U.Advances in knowledge discovery and data mining.AAAI Press/The MIT Press,1996
  • 10Wade M,Katebi R.Data mining and knowledge extraction in wastewater treatment plants.IEE Seminar Developments in Control Systems in the Water Industry,2002,(120):1~25

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部