摘要
该文研究了一个高维耦合非恒等的Lorenz格点系统,得到了在Dirichlet边界条件下,此格点系统解的全局稳定性的一个充分条件;并且证明了在Neumann边界条件和周期边界条件下,当耦合系数充分大时,此格点系统的解具有渐近同步性.
In this paper high-dimensional coupled non-identical Lorenz equations are studied. A sufficient condition for global stability of the solution to this coupled system under the Dirichlet condition is obtained. It is proved that asymptotic synchronization occurs when coupling strengths in this system under Neumann and periodic boundary conditions are sufficiently large.
出处
《上海大学学报(自然科学版)》
CAS
CSCD
北大核心
2005年第3期251-256,共6页
Journal of Shanghai University:Natural Science Edition
基金
国家自然科学基金资助项目(10171072)
关键词
点耗散
格点系统
渐近同步性
LORENZ方程
pointwise dissipation
lattice system
asymptotic synchronization
Lorenz equations