期刊文献+

耦合的Lorenz方程格点系统解的渐近同步性 被引量:1

Asymptotic Synchronization in Lattices of Coupled Non-Identical Lorenz Equations
在线阅读 下载PDF
导出
摘要 该文研究了一个高维耦合非恒等的Lorenz格点系统,得到了在Dirichlet边界条件下,此格点系统解的全局稳定性的一个充分条件;并且证明了在Neumann边界条件和周期边界条件下,当耦合系数充分大时,此格点系统的解具有渐近同步性. In this paper high-dimensional coupled non-identical Lorenz equations are studied. A sufficient condition for global stability of the solution to this coupled system under the Dirichlet condition is obtained. It is proved that asymptotic synchronization occurs when coupling strengths in this system under Neumann and periodic boundary conditions are sufficiently large.
机构地区 上海大学理学院
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第3期251-256,共6页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(10171072)
关键词 点耗散 格点系统 渐近同步性 LORENZ方程 pointwise dissipation lattice system asymptotic synchronization Lorenz equations
  • 相关文献

参考文献9

  • 1Carrol T L, Pecora L M. Synchronizing nonautonomous chaotic circuits [ J]. IEEE Trans Circuits Systems, 1991,38:453-456.
  • 2Mirollo R E, Strogatz S H. Synchronization of pulse-coupled biological oscillators[J]. SIAM J Appl Math, 1990, 50:1 645-1 662.
  • 3Abbott L F, Van Vreeswijk C. A Synchronous states in networks of coupled oscillators [J] . Phys Rev E, 1993, 48:1 483-1 490.
  • 4Goldsztein G, Strogatz S H. Stability of synchronization in networks of digital phase-locked loops [ J ]. Internat J Bifur Chaos, 1995, 5:983-990.
  • 5Afraimovich V S, Verichev N N, Rabinovich M I. Stochastic synchronization of oscillators in disspative systems [ J ]. Izv Vys Uch Zav, Radiofizika, 1986, 29:1 050-1 060.
  • 6Heagy J F, Carroll T L, Pecora L M. Synchronous chaos in coupled oscillator systems [J]. Phys Rev E, 1994, 50(3):1 874-1 885.
  • 7Chiu C H, Lin W W, Peng C C. Asymptotic synchronization in lattices of coupled nonidentical Lorenz equations [J].International Journal of Bifurcation and Chaos, 2000, 10(12) :2 717-2 728.
  • 8Temam R. Infinite-dimensional dynamical systems in mechanics and physics[M]. New York: Appl Math Sci,Springer-Verlag, 1997, 68:34-35.
  • 9Afraimovich V S, Chow S N, Hale J K. Synchronization in lattices of coupled oscillators[J]. Physica D, 1997, 103:442-451.

同被引文献6

  • 1[1]Firth W I.Optical memory and spatial chaos[J].Phys Rev Lett,1998(61):329.
  • 2[2]Bell J,Cosner C.Threshold behavior and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons[J].Quart Appl Math,1984(42):1.
  • 3[3]Keener J P.Propagation and its failure in coupled systems of discrete excitable cells[J].SIAM J Appl Math,1987(47):556.
  • 4[4]Cahn J W.Theory of crystal growth and interface motion in crytalline materials[J].Acta Metall,1960(8):554.
  • 5[5]Chiu C H,Lin W W,Peng C C.Asymptotic synchronization in lattices of coupled nonidentical Lorenz equations[J].International Journal of Bifurcation and Chaos,2000(12):2717.
  • 6[7]Temam R.Infinite-dimensional dynamical systems in mechanics and physics[M].New York:Appl Math Sci,Springer-Verlag,1997(68):34.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部