期刊文献+

支持向量机在砂土液化预测中的应用研究 被引量:6

Application of the support vector machine in prediction of sand liquefaction
在线阅读 下载PDF
导出
摘要 介绍了人工智能领域最新的基于结构风险最小化原理的数据挖掘算法———支持向量机算法。根据支持向量机线性分类和可以具有不同核函数的非线性分类两种算法,建立了砂土液化预测模型,并且运用Matlab语言编写了程序。通过试算和分析比较得到了最佳模型,最佳模型的预测结果与实际液化情况基本上一致。认为支持向量机算法无论在学习或者预测精度方面都有很大的优越性,而基于支持向量机理论建立的砂土液化预测模型是可行的,且可以较为准确地实现砂土液化的预测。 Based on the structural risk minimization principle, the latest data mining method, support vector machine(SVM) algorithm, in artificial intelligence field was introduced in this paper. Models for sand liquefaction prediction were established according to the linear classify algorithm and the nonlinear classify algorithm of SVM, and a program was compiled in language Matlab. The best model was gained after trials and analysis, and gotten a good coherency between the prediction results and the actual liquefaction. The support vector machine algorithm has an obvious superiority whatever on machine learning or prediction accuracy, and the model for sand liquefaction prediction based on the SVM theory is feasible, and it can forecast the sand liquefaction more accurately.
出处 《中国地质灾害与防治学报》 CSCD 2005年第2期15-18,23,共5页 The Chinese Journal of Geological Hazard and Control
基金 福建省自然科学基金资助项目(D020014)
关键词 支持向量机 砂土液化 预测模型 线性分类算法 非线性分类算法 support vector machine sand liquefaction prediction model linear classify algorithm non-linear classify algorithm
  • 相关文献

参考文献3

二级参考文献4

共引文献87

同被引文献79

引证文献6

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部