期刊文献+

基于线性状态观测器的混沌同步及其在保密通信中的应用 被引量:14

Observer based chaos synchronization and its application to secure communication
在线阅读 下载PDF
导出
摘要 给出了一类基于线性状态观测器混沌或超混沌同步的方案,并将其应用到混沌保密通信中。对观测器的理论分析表明,该方案的同步误差收敛速率是由观测器的增益参数θ来决定的;θ越大,同步误差的收敛速率越快。最后通过对R?ssler系统的仿真研究,验证了该方案的有效性。 A linear state observer based synchronization scheme for a class of chaotic systems was presented, and this scheme was applied to secure communication. The analysis result to the observer showed that the system’s convergence rate of the synchronization error depends on the parameter θ of observer gain, in the sense that the larger the value of θ, the faster the convergence. Finally, a simulation of R?ssler system effectively exploits the proposed scheme’s effectiveness.
出处 《通信学报》 EI CSCD 北大核心 2005年第6期105-111,136,共8页 Journal on Communications
基金 国家自然科学基金资助项目(69974008) 辽宁省教育厅高等学校科学技术研究资助项目(20040081)
关键词 混沌同步 保密通信 线性状态观测器 同步误差 chaotic synchronization secure communication linear state observer synchronization error
  • 相关文献

参考文献22

  • 1CARROLL T L, PECORA L M. Synchronizing chaotic circuits[J].IEEE Transactions on Circuits and Systems, 1991, 38(4): 453-456.
  • 2MORGUL O, SOLAK E. Observer based synchronization of chaotic systems[J]. Physical Review E, 1996, 54(5): 4803-4811.
  • 3MORGUL O, SOLAK E. On the synchronization of chaotic systems by using state observers[J]. International Journal of Bifurcation and Chaos, 1997, 7(6): 1307-1322.
  • 4NIJMEIJER H, MAREELS I M Y. An observer looks at synchronization[J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, 1997, 44(10): 882-890.
  • 5GRASSI G, MASCOLO S. Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal[J]. IEEE Transactions on Circuits and Systems Ⅰ: Fundamental Theory and Applications, 1997,44(10): 1011-1014.
  • 6LIAO T L. Observer-based approach for controlling chaotic systems[J].Physical Review E, 1998, 57(2): 1604-1610.
  • 7Yang S S, Duan C K. Generalized synchronization in chaotic systems[J]. Chaos, Solitons & Fractals, 1998, 9(10): 1703-1707.
  • 8HUIJBERTS H, LILGE T, NIJMEIJER H. Nonlinear discrete-time synchronization via extended observers[J]. International Journal of Bifurcation & Chaos, 2001, 11(7): 1997-2006.
  • 9YANG X S, CHEN G R. Some observer-based criteria for discrete-time generalized chaos synchronization[J]. Chaos, Solitons & Fractals, 2002, 13(6): 1303-1308.
  • 10FEKI M, ROBERT B. Observer-based chaotic synchronization in the presence of unknown inputs[J]. Chaos, Solitons & Fractals, 2003,15(5): 831-840.

二级参考文献10

  • 1WANG XingyuanSchool of Electronic and Information Engineering, Dalian University of Technology, Dalian 116024, China.Relation of chaos activity characteristics of the cardiac system with the evolution of species[J].Chinese Science Bulletin,2002,47(24):2042-2048. 被引量:21
  • 2格莱克 张淑誉等(译).混沌:开创新科学[M].上海:上海译文出版社,1990.270-344.
  • 3格莱克著 张淑誉译.混沌:开创新科学[M].上海:上海译文出版社,1990.9-86.
  • 4Lorenz E N. Deterministic nonperiodic flow [ J]. J Atmos Sci, 1963,20: 130 - 141.
  • 5Benettin G, Galgani L, Strelcyn J M. Kolmogorov entropy and numerical experiments [J]. Plays Rev A, 1976,14:2338- 2345.
  • 6Grassberger P, Procaccia I. Characterization of strange attractors [J] .Phys Rev Lett, 1983,50:346- 355.
  • 7Packard N H, Crutchfield P, Farmer J D, Shaw R S. Geometry from a time series [J]. Plays Bey Lett, 1980,45:712- 716.
  • 8Brandstater A, Swinney H L. Strange attractors in weakly turbulent Couette-Taylor flow [J]. Phys Rev A, 1987,35:2207 - 2219.
  • 9王兴元,朱伟勇.二维 Logistic 映象的吸引子演化[J].东北大学学报(自然科学版),1997,18(4):417-420. 被引量:8
  • 10王兴元,顾树生.心电动态生理及病理信息的非线性动力学研究[J].中国生物医学工程学报,2000,19(4):397-403. 被引量:13

共引文献27

同被引文献126

引证文献14

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部