期刊文献+

一维复系数Swift-Hohenberg方程的精确解 被引量:2

The exact solutions to one-dimension Swift-Hohenberg equations with complex coefficients
在线阅读 下载PDF
导出
摘要 复平面上的标准的耗散系统可以利用Swift-Hohenberg方程来描述,它是物理学中很重要的一个方程,在激光的对流问题和流体力学中有广泛地应用.利用F-展开式方法,得到一维复系数的Swift-Hohenberg方程的新精确解. Swift-Hohenberg equations can be used to discribe the standard dissipation system in a complex plane. It is an important equation in physics and applied extensively in the laser convection and fluid mechenics. By using the F-expansion method, new exact solutions to one-dimension Swift-Hohenberg equations were obtained.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第3期110-113,共4页 Journal of Lanzhou University(Natural Sciences)
关键词 F-展开式方法 精确解 孤立波解 Jacobi~][]函数 SWIFT-HOHENBERG方程 F-expansion method exact solution solitary solution Jacobi elliptic function Swift-Hohenberg equation
  • 相关文献

参考文献12

  • 1Wang M L. Exact solutions for a compound Kd VBurgers equation[J]. Phys Lett A, 1996, 213(6):279-287.
  • 2王明亮,周宇斌.一个非线性波动方程的精确解[J].兰州大学学报(自然科学版),1996,32(1):1-5. 被引量:14
  • 3王明亮,李志斌,周宇斌.齐次平衡原则及其应用[J].兰州大学学报(自然科学版),1999,35(3):8-16. 被引量:183
  • 4Parkes E J, Duffy B R. The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations[J]. Phys Lett A, 2002,280(8): 229-217.
  • 5Fan E G. Applications of the Jacobi elliptic function method to the special-type nonlinear equations[J].Phys Lett A, 2002, 305(6): 277-212.
  • 6张解放,陈芳跃.截断展开方法和广义变系数KdV方程新的精确类孤子解[J].物理学报,2001,50(9):1648-1650. 被引量:111
  • 7Liu S K, Fu Z T, Liu S D, et al. Jacobi elliptic function expansion and periodic solutions of nonlinear wave equations[J]. Phys Lett A, 2001, 289(1-2):69.
  • 8Fu Z T, Liu S K, Liu S D, et al. New Jacobi elliptic function expansion method and new periodic wave solutions of nonlinear wave equations[J]. Phys Lett A, 2001, 290(1-2): 72.
  • 9Zhou Y B, Wang M L, Wang Y M. Periodic wave solutions to a coupled KdV equations with variable coefficients[J]. Phys Lett A, 2003, 308(1-2): 31.
  • 10Zhou Y B, Wang M L, Miao T D. The periodic wave solutions and solitary wave solutions for a class of nonlinear partial differential equations[J]. Phys Lett A, 2004, 323(1-2): 77.

二级参考文献32

共引文献297

同被引文献6

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部