期刊文献+

基于ISODATA算法的漏磁信号到缺陷轮廓的网络映射 被引量:1

Net Mapping from Magnetic Flux Leakage Signals to Profiles of Defects Based on ISODATA Algorithm
在线阅读 下载PDF
导出
摘要 由于漏磁信号与缺陷轮廓的非线性关系,由管道漏磁信号描述管道缺陷的几何特征一直是管道漏磁检测的难点.本文采用小波基函数神经网络的方法,建立了由管道缺陷的漏磁信号到缺陷截面轮廓图的网络映射.算法中应用迭代自组织数据分析(ISODATA)动态聚类的算法使得基函数中心的选取更加合理,经过多层分辨率的训练,网络输出表明,该网络可以较准确反映出缺陷的几何特征,为管道缺陷的特征提取提供一种可行的方法. Because of the nonlinear relationship between the magnetic flux leakage (MFL) signals and profiles of defects, it is difficult to describe the characters of defects in buried pipelines by pipeline MFL inspection signals. In this paper,a net mapping from pipeline MFL inspection signals to profiles of defects is established by using the wavelet basis function neural network method, in which centers of basis functions are selected using iterative self-organizing data analysis techniques (ISODATA) dynamic clustering algorithm. After this multi-resolution wavelet basis function neural network is trained, the output indicates that this net can accurately reflect the characters of defects,therefore it can be a feasible method to extract the characters of pipeline defects.
出处 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2005年第5期395-399,共5页 Journal of Tianjin University:Science and Technology
基金 国家自然科学基金资助项目(69974025)
关键词 埋地管道 漏磁检测 小波基函数神经网络 ISODATA算法 缺陷 buried pipeline magnetic flux leakage detection wavelet basis function neural network ISODATA algorithm defect
  • 相关文献

参考文献7

  • 1Bernard M.Applying radial basis functions[J].IEEE Signal Processing Magazine,1996(3):50-65.
  • 2Zhang Jun,Gilbert G Walter,Miao Yubo,et al.Wavelet neural networks for function learning[J].IEEE Transactions on Signal Processing,1995,43(6): 1 485-1 497.
  • 3Mukhopadhyay S,Srivastava G P.Characterisation of metal loss defects from magnetic flux leakage signals with discrect wavelet transform[J].NDT&E International,2000,33:57-65.
  • 4Hwang K,Mandayam S,Udpa S S,et al.Characterization of gas pipeline inspection signals using wavelet basis function neural networks[J].NDT&E International,2000,33:531-545.
  • 5Zhang Qinghua, Albert Benveniste. Wavelet networks[J].IEEE Transactions on Neural Networks, 1992,3(6):889-898.
  • 6Tou J T,Gonzalez R C.Pattern Recognition Principles[M]. Reading,MA: Addison-Wesley, 1979.
  • 7Datta B N.Numerical Linear Algebra and Applications[M].Pacific Grove, CA: Brooks/cole, 1995.

同被引文献33

引证文献1

二级引证文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部