期刊文献+

不同晶格磁性光子晶体异质结的界面传导模 被引量:4

Guide Modes in Magnetic Photonic Crystal Heterostructures Composed of Different Lattices
原文传递
导出
摘要 利用平面波展开方法研究了两种二维磁性光子晶体(MPC)的带隙(PBG)结构,一种磁性光子晶体是在长方格子纯电介质背景上放置磁性介质长方形散射子,另一种是在三角形格子纯电介质背景上放置磁性介质圆形散射子。计算了这两种磁性光子晶体的带隙随磁导率的变化规律,发现这两种磁性光子晶体的带隙宽高比(带隙宽与带隙中心位置比)都比较大。在此基础上由这两种磁性光子晶体构成了磁性光子晶体异质结(MRRTC异质结),并利用超原胞方法计算了这种异质结的带隙结构。研究发现MRRTC异质结无需从界面做晶格拉开或者侧向滑移就可在绝对带隙中产生界面传导模。分别从MRRTC异质结的界面处做晶格拉开和侧向滑移,发现传导模位置及形状发生了很大变化。 The photonic-band-gap (PBG) structures of two-dimensional magnetic photonic crystals (MPCs) are investigated by using the plane wave expansion (PWE) method. One is composed of rectangular magnetic pillars embedded into host dielectric in rectangular lattice (RR type), the other consists of circle magnetic cylinders embedded into host dielectric in triangular lattices (TC type). The changes of PBG structures corresponding to the magnetic permeability are presented, and each sample is found with large ratio of gap-midgap. Based on the above results, the PBG structure of magnetic heterostructures composed of both RR type and TC type MPCs (MRRTC heterostructures) is investigated by use of PWE method combined with the supercell technique. The guide modes at the interface of MRRTC heterostructures are produced at absolute PBG without longitudinal gliding or displacement of the lattice. When introducing the relatively longitudinal gliding and transverse displacement of the lattice from the interface, the dispersion curves of guide modes vary apparently.
出处 《光学学报》 EI CAS CSCD 北大核心 2005年第5期665-669,共5页 Acta Optica Sinica
基金 国家重点基础研究发展计划(001CB61040) 北京市自然科学基金(1032003) 北京市教委科技发展计划(KM200310028108)资助的课题。
关键词 光电子学 光子晶体 异质结 传导模 超原胞 Dielectric materials Energy gap Heterojunctions Magnetic materials Magnetic permeability Two dimensional
  • 相关文献

参考文献17

二级参考文献59

  • 1金崇君,秦柏,杨森,秦汝虎.三角形复式晶格的光子带结构研究[J].光学学报,1997,17(4):409-413. 被引量:24
  • 2Wen W J, Wang N, Ma H R et al. Field induced structural transition in miscocrystallites. Phys. Rev.Lett , 1999, 82(21):4248-4251.
  • 3Zhang W Y, Lei X Y, Wang Z L et al. Robust photonic band gap from tunable scatters. Phys. Rev. Lett , 2000,84(13) :2853-2856.
  • 4Li Z Y, Zhang Z Q. Fragility of photonic band gaps inverse-opal photonic crystals. Phys. Rev. (B), 2000, 62(3) :1516-1519.
  • 5Happ T D, Markard A, Kamp M et al. InP-base short cavity lasers with 2D photonic crystal mirror. Electron.Lett , 2001, 37(7):428-430.
  • 6Kee C S, Kim J E, Park H Y. Absolute photonic band gap in a two-dimensional chessboard lattice. Phys. Rev. (E),1997, 56(6) :R6291 -R6293.
  • 7Qiu M, He S L. Large complete band gap in two-dimension photonic crystals with elliptic air holes. Phys.Rev. (B), 1999, 60(15):10610-10612.
  • 8Anderson C M, Giaps K P. Larger two-dimensional photonic band gaps. Phys. Rev. Lett. , 1996, 77 (14)2949-2952.
  • 9Zhang X D, Zhang Z Q. Creating a gap without symmetry breaking in two-dimensional photonic crystals. Phys. Rev.(B), 2000, 61(15) :9847-9850.
  • 10Qiu M, He S L. Optimal design of a two-dimensional photonic crystal of square lattice with a large complete two-dimensional bandgap. J. Opt. Soc. Am. (B), 2000,17(6):1027- 1030.

共引文献45

同被引文献33

引证文献4

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部