期刊文献+

基于自然语言理解的文本标图系统设计与实现 被引量:9

Design and Implementation of writ plotting systembased on natural language understanding
在线阅读 下载PDF
导出
摘要 提出和实现了一套基于自然语言理解的军用文书到标绘图智能转换的解决方案。文本标图系统通过标绘信息提取模块和军标标绘模块,针对军事文本标图的需求和汉语的特点,由计算机在自然语言理解的基础上对作战文书文本进行分析、理解、提取标绘信息、自动标图作业,最后生成战场态势图。该系统完成了军事标图作业和文书处理的手工作业向机器作业的转换,提高了指挥作业的速度和效率。 The solution expatiated in this thesis realizes the intelligent change from military writ to military plotting with natural language understanding (NLU) and information extraction (IE) techniques. Depending on module of plotting information extraction and module of military sign plotting, the writ plottig system(WPS) analysed and understood writ, and then, extracted plotting information and plot automatically. The system can finitely transfer military writ to military plotting projects. It improves the efficiency of military plotting.
出处 《解放军理工大学学报(自然科学版)》 EI 2005年第2期132-136,共5页 Journal of PLA University of Science and Technology(Natural Science Edition)
  • 相关文献

参考文献8

  • 1李向阳,张亚非.基于语义标注的信息抽取[J].解放军理工大学学报(自然科学版),2004,5(4):39-43. 被引量:12
  • 2胡晓峰 司光亚.战争模拟引论[M].北京:国防大学出版社,2004..
  • 3张冬茉 姚天昉 王纤.[D].上海:上海交通大学,1999.
  • 4孙宾.汉语信息提取的部分研究[EB/OL].http://icl.pku.edu.cn/bswen/nlp/bsPhD-chapt4.html-1999-03-16,.
  • 5WONG K F, LI W J, YUAN C F. Classifying temporal concepts in chinese for information extraction[J]. Proceedings of 5th Natural Language Processing Pacfic Rim Symposium (NLPRS'99), 1999, 6(1) :172-177.
  • 6MARY E C, RAYMOND J M. Relational learning of pattern-match rules for information extraction[J]. Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI99), 1999, 11(3):328-334.
  • 7SODERLAND G. Learning text analysis rules for domain-specific natural language processing[D]. Amherst: University of Massachusetts,1997.
  • 8COLLINS M, MILLER S. Semantic tagging using a probabilistic context free grammar[EB/OL]. http://www.ai.mit.edu/people/mcollins/papers/wvlcb.finas.ps,2003-12-22.

二级参考文献5

  • 1[1]ELLEN R. Information extraction as a stepping stone toward story understanding [M]. Montreal:MIT press, 1999.
  • 2[2]SODERLAND G. Learning text analysis rules for domain-specific natural language processing [D]. Amherst: University of Massachusetts, 1997.
  • 3[3]COLLINS M, MILLER S. Semantic tagging using a probabilistic context free grammar [EB/OL].http://www.ai.mit.edu/people/mcollins/papers/wvlcb.fin-as.ps,2003-12-22.
  • 4[4]HOBBS, JERRY R, DOUGLAS E, et al. FASTUS: a cascaded finite-state transducer for extracting information from natural-language text[A]. In: Finite State Devices for Natural Language Processing[C]. Cambridge: MIT Press, 1997.
  • 5李向阳,张亚非.一种Hash高速分词算法[J].解放军理工大学学报(自然科学版),2004,5(2):40-44. 被引量:12

共引文献25

同被引文献53

引证文献9

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部