期刊文献+

基于遗传算法的二层线性规划问题的求解算法 被引量:7

A Solving Method for the Linear Bilevel Programming Problem Based on Genetic Algorithms
在线阅读 下载PDF
导出
摘要 本文研究了下层以最优解返回上层的二层线性规划问题的遗传算法。在提出可行度概念的基础上,构造了二层线性规划上层规划问题的适应度函数,由此设计了求解二层线性规划问题遗传算法。为了提高遗传算法处理约束的能力,在产生初始种群时将随机产生的初始种群变为满足约束的初始种群,从而避免了使用罚函数处理约束带来的困难,最后用实例验证了本文提出的二层线性规划的遗传算法的有效性。 For the linear bilevel programming problem, we propose the definition of the feasibility, and construct the fitness function to use the genetic algorithms to solve the linear bilevel programming problem. To improve the capacity of the proposed algorithm to deal with the constraints, a randomly generated initial population is changed into an initial population satisfying the constraints, avoiding the use of penalty function to deal with the constraints. Finally, the examples are adopted to verify the effectiveness of the proposed method.
出处 《运筹与管理》 CSCD 2005年第2期54-58,共5页 Operations Research and Management Science
基金 国家自然科学基金资助项目(70371032 60274048) 中国教育部博士点专项基金资助项目(20020486035)
关键词 运筹学 二层线性规划 遗传算法 适应度函数 operational research linear bilevel programming genetic algorithms fitness function
  • 相关文献

参考文献15

  • 1Z米凯利维茨 周家驹(译).演化程序——遗传算法和数据编码的结合[M].北京:科学出版社,2000..
  • 2Bialas W F, Karwan M H. Two-level linear programming[j]. Management Science, 1984,30(8):1004-1020.
  • 3Bard j. Some properties of the bilevel linear programming[j ]. journal of Optimization Theory and Applications, 1991,32:146-164.
  • 4Blair Ben-Ayed O C. Computational difficulties of bilevel linear programming[j ]. Operations Research, 1990,38 : 556-560.
  • 5Hanaen P, jaumard B, Savard G. New branch-and-bound rules [or linear bilevel programming[j]. SlAM journal on Science and Statistical Computing, 1992,13 : 1194-1217.
  • 6Vicente L, Savard G, judice j. Decent approaches for quadratic bilevel programming[j ]. journal of Optimization Theory and Applications,1994,81:379-399.
  • 7Bard j F. Practical bilevel optimization: algorithms and applications[ M]. Kluwer Academic Publishers, 1998.
  • 8Dempe S. Foundations of bilevel programming[M]. Kluwer Academic Publishers, 2002.
  • 9Dempe S. Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints[j ]. Optimization, 2003,52:333-359.
  • 10Liu B. Stackelberg-Nash equilibrium for multilevel programming with multiple follows using genetic algorithms[j]. Computers Math. Applic. ,1998,36(7) :79-89.

共引文献2

同被引文献78

引证文献7

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部