期刊文献+

Application of Bayesian Dynamic Forecast in Anomaly Detection 被引量:1

Application of Bayesian Dynamic Forecast in Anomaly Detection
在线阅读 下载PDF
导出
摘要 A macroscopical anomaly detection method based on intrusion statistic and Bayesian dynamic forecast is presented. A large number of alert data that cannot be dealt with in time are always aggregated in control centers of large-scale intrusion detection systems. In order to improve the efficiency and veracity of intrusion analysis, the intrusion intensity values are picked from alert data and Bayesian dynamic forecast method is used to detect anomaly. The experiments show that the new method is effective on detecting macroscopical anomaly in large-scale intrusion detection systems. A macroscopical anomaly detection method based on intrusion statistic and Bayesian dynamic forecast is presented. A large number of alert data that cannot be dealt with in time are always aggregated in control centers of large-scale intrusion detection systems. In order to improve the efficiency and veracity of intrusion analysis, the intrusion intensity values are picked from alert data and Bayesian dynamic forecast method is used to detect anomaly. The experiments show that the new method is effective on detecting macroscopical anomaly in large-scale intrusion detection systems.
作者 阎慧 曹元大
出处 《Journal of Beijing Institute of Technology》 EI CAS 2005年第1期41-44,共4页 北京理工大学学报(英文版)
关键词 intrusion detection system (IDS) Bayesian dynamic forecast anomaly detection intrusion detection system (IDS) Bayesian dynamic forecast anomaly detection
  • 相关文献

参考文献4

  • 1ManganarisS,ChristensenM,ZerkleD,etal.Adata mininganalysisofRTIDalarms[].WebProceed ingsofthendInternationalWorkshoponRecentAd vancesinIntrusionDetection(RAID’).
  • 2JavitzH,ValdesA.TheSRIIDESstatisticalanomaly detection. http:∥www.sdl.sri.com/papers/ stats91 .
  • 3ZhangXiaoling,LiuFusheng,ZhangChengjin,etal.Bayesiandynamicmodelandforecast[]..1992
  • 4TangZhengjun.Analysisofsourcecodeofhackersintru siondefensesystem[]..2002

同被引文献15

  • 1冯力,孙杰,周晓明,杨力伟,彭勤科.基于Windows Native API序列的异常检测模型[J].西安交通大学学报,2006,40(4):406-410. 被引量:3
  • 2文桥,王卫平.基于改进贝叶斯算法的入侵检测方法[J].计算机工程,2006,32(12):160-162. 被引量:5
  • 3李乃捷,彭勤科.利用Windows Native API调用序列和基于决策树算法的主机异常检测[J].计算机应用研究,2007,24(1):258-260. 被引量:2
  • 4何慧,苏一丹,周叶.基于增量式贝叶斯智能入侵检测模型[J].江西师范大学学报(自然科学版),2007,31(1):70-72. 被引量:2
  • 5[1]FORREST S.A sense of self for Unix processes[C]//IEEE Symposium on Security and Privacy,1996:120-128.
  • 6[3]WENKE LEE,SALVATORE J S.Data mining approaches for intrusion detection[C]//Proceedings of the 7th USENIX Security Symposium.San Antonio,Texas,1998.
  • 7[5]ESKIN E,LEE W,STOLFO S.Modeling system call for intrusion detection using dynamic window sizes[C]//Proceedings of the 2001 DARPA Information Survivability Conference & Exposition.Anaheim,CA,2001.
  • 8[7]LEE W,STOLFO S J,CHAN P K.Learning patterns from unix processes execution traces for intrusion detection[C]//Proceedings of the AAAI-97 Workshop on AI Approaches to Fraud Detection and Risk Management.Menlo Park,CA:AAAI Press 1997:50-60.
  • 9[8]Kohei TATARA.A probabilistic method for detecting anomalous program behavior[C]//Workshop on Information Security Applications(WISA04),Aug,2004.
  • 10[9]Kumar S.Classification and detection of computer intrusions[D].Purdue,1995.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部