期刊文献+

转移开、闭集值映象和H-KKM定理的推广及应用 被引量:3

Transfer Open or Closed Setvalued Mapping and Generalization of H-KKM Theorem with Applications
在线阅读 下载PDF
导出
摘要 本文中,我们引入转移开、闭集值映象的概念,推广了H-空间中的KKM定理 ̄[4].然后用所得的结果证明了几个重合定理、匹配定理和向量值极大极小不等式。这些结论推广了近期文献[1,2,4,5,6,7]中的相应结果。 In this paper,we introduce a class of generalized mapping called transfer open or closed valued mapping to generalized the KKM theorem on H-space。Then as applications. using our H-KKM theorem,we prove some coincidence theorems,matching theorems and vecotor valued minimax inequalities which generalize slightly the corresponding results in[1,2,4,5,6,7]。
出处 《应用数学和力学》 EI CSCD 北大核心 1994年第10期927-933,共7页 Applied Mathematics and Mechanics
关键词 重合定理 H-KKM定理 集值映象 transfer closed or open setvalued mapping.coincidence theorem,H-KKM mapping.matching theorem
  • 相关文献

同被引文献12

  • 1张石生,康世焜,郭伟平.H-空间中的鞍点定理与截口定理[J].成都科技大学学报,1994(4):58-63. 被引量:1
  • 2Knaster B, Kurtowski C, Mazurkiewicz S. Ein beweis des fixpunksaties fur n-dimensionale simple[J]. Fund Math,1929,14:132~137.
  • 3Khamsi M A. KKM and Ky Fan theorem in hyperconvex space[J]. J Math Anal Appl,1996,204(2):298~306.
  • 4Yuan X Z. The characterization of generalized metric KKM mappings with open values in hyperconvex metric space and some applications[J]. J Math Anal Appl,1999,235(2):315~325.
  • 5Kirk W A, Sims B, Yuan X Z. The KKM theory in hyperconvex metric spaces and some of its applications[J]. Nonlinear Anal,2000,39:611~627.
  • 6Tan K K. G-KKM theorem, minimax inequalities and saddle points[J]. Nonlinear Anal TMA,1997,30:4151~4160.
  • 7Ding X P. Generalized G-KKM theorems in generalized convex spaces and their applications[J]. J Math Anal Appl,2002,266:21~37.
  • 8Ding X P. Generalized L-KKM type theorems in L-convex spaces with applications[J]. Computers Math Appl[J]. 2002,43:1249~1256.
  • 9何诣然.KKM定理,极小极大不等式的推广和应用[J].四川师范大学学报(自然科学版),1998,21(2):154-158. 被引量:2
  • 10张石生,张宪.Browder不动点定理的推广及应用[J].应用数学和力学,1999,20(9):881-888. 被引量:4

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部