期刊文献+

求解伪单调变分不等式的两种投影算法(英文)

Two Project ion-Type Algorithms for Solving Pseudo-Monotone Variational Inequality Problems
在线阅读 下载PDF
导出
摘要 本文提出了两种求解伪单调变分不等式的定步长的投影算法.这与Solodov&Tseng(1996)和He(1997)的变步长策略不同.我们证明了算法的全局收敛性,并且还在一定条件下证明了算法的Q-线性收敛性. In this paper, we present two projection-type algorithms for solving pseudo-monotone variational inequality problems. These algorithms use the fixed stepsize strategy, different from the ones presented by Solodov & Tseng (1996) and He (1997) using the variable stepsize strategy. It has been shown that the algorithms are globally convergent and, under some mild conditions, they are convergent Q-linearly.
出处 《运筹学学报》 CSCD 北大核心 2005年第1期58-64,共7页 Operations Research Transactions
基金 Supported by the NSF of China 10001007State Foundations of Ph.D Units 20020141013 research foundation of DUT (2002-03).
关键词 单调变分不等式 求解 全局收敛性 证明 投影算法 线性 变步长 Operations research, variational inequality, pseudo-monotonicity, projection-type algorithm, convergence
  • 相关文献

参考文献10

  • 1M. Fukushima. A Relaxed Projection Method for Variational Inequalities. Mathematical Programming, 1986, 35: 58-70.
  • 2E.M. Gafni and D.P. Bertsekas. Two-metric Projection Methods for Constrained Optimizition.SIAM Journal on Control and Optimization, 1984, 22: 936-964.
  • 3P.T. Harker and J.S. Pang. Finite Dimensional Variational Inequality and Nonlinear Complementarity Problems: A Survey of Theory, Algorithms and Applications. Mathematical Programming, 1990, 48: 161-220.
  • 4B. He. A Class of Projection and Contraction Methods for Monotone Variational Inequalities.Applied Mathematics and Optimization, 1997, 35: 69-76.
  • 5S. Karamardian and S. Schaible. Seven Kinds of Monotone Maps, Journal of Optimization Theory and Applications 1990, 66: 37-46.
  • 6J.M. Ortega and W.C. Rheinboldt Iterative Solution of Nonlinear Equations in Several Variables,Academic Press, New York, 1970.
  • 7J.S. Pang and D. Chan. Iterative Methods for Variational Inequality and Complementarity Problems. Mathematical Programming, 1982, 24: 284-313.
  • 8M.V. Solodov and P. Tseng. Modified Projection-type Methods for Monotone Variational Inequalities. SIAM Journal on Control Optimization, 1996, 34: 1814-1830.
  • 9D. Sun. A Class of Iterative Methods for Solving Nonlinear Projection Equations. Journal of Optimization Theorey and Applications 1996, 91: 123-140.
  • 10P. Tseng. On Linear Convergence of Iterative Methods for the Variational Inequality Problem.Journal of Computational and Applied Mathematics, 1995, 60: 237-252.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部