期刊文献+

基于高斯混合模型的纹理图像分割 被引量:27

Texture Image Segmentation Based on Gaussian Mixture Models
在线阅读 下载PDF
导出
摘要 纹理图像分割是图像处理的一个基本问题。由于基于高斯混合模型的纹理图像分割方法,大多采用单像素的方法,因此分割精度和效率都较低。为了更好地进行纹理图像分割,在子空间思想的基础上,提出了一个基于图像块的分割算法及其改进算法,即先取图像块的均值、标准差、最大值、最小值以及中间像素的像素值等5个特征作为纹理特征,再利用高斯混合模型进行纹理图像分割,实验结果表明,该新算法的分割精度和分割效率较原分割算法都有较大提高。 In the field of image processing, Image segmentation is the basic problem. Using mixtures of!Gauss, Some people segment image by single pixel value and get poor precision and lower efficiency. For segmenting image well, in this paper, we present a texture image segmentation algorithm by image patches. It is inspired by sub space on some authors. Our experiences show that this algorithm can segment texture image a little, although it cost very much in time. Then we take mean, stand deviation, maximum, minimum and middle pixel value of image patch as features. Our algorithm segments texture image very well. Especially, it improves a lot in time.
作者 余鹏 封举富
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2005年第3期281-285,共5页 Journal of Image and Graphics
基金 国家重点基础研究发展规划项目(G1998030600)
关键词 纹理图像 分割算法 高斯混合模型 基于图像 纹理特征 分割方法 图像处理 图像块 像素 子空间 image segmentation, texture image, Gaussian mixture models, EM algorithms
  • 相关文献

参考文献10

  • 1Turk M A, Pentland A P. Face recognition using eigenfaces[ A ]. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1991: 586 ~ 591.
  • 2Jain A K, Duin R, Mao J. Statistical pattern recognition: A review [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22( 1 ): 4 ~ 38.
  • 3Figueiredo M A T, Jain A K. Unsupervised learning of finite mixture models [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 ( 3 ) :381 ~ 396.
  • 4Akaike H. A new look at statistical model identification [ J ]. IEEE Transactions on Automatic Control, 1974, 19(6) :716 ~ 723.
  • 5Chickering D M, Heckerman D. Efficient approximations for the marginal likelihood of bayesian networks with hidden variables [ R ].Microsoft Research Technical Report, MSR-TR-96-08, 1997.
  • 6Barron A, Rissanen J, Yu B. The minimum description length principle in coding and modeling [ J ]. IEEE Transactions on Information Theory, 1998, 44(6) :2743 ~ 2760.
  • 7McLachlan G, Peel D. Finite mixture models[M]. New York: John Wiley & Sons, 2000.
  • 8Dempster A, Laird N, Rubin D. Maximum likehood estimation from incomplete data via the EM algorithm [ J ]. Journal of the Royal Statistical Society. Series B, 1977, 39 ( 1 ): 1 ~ 38.
  • 9Kohonen T, Kaski S, Lappalainen H. Self-organized formation of various invariant feature filters in the adaptive-subspace SOM [ J ].Neural Computation, 1997, 9(6) :1321 ~ 1344.
  • 10Lu H, Fainman Y, Hecht_ Nielsen R. Image manifolds [ A ]. In:Proceedings of SPIE Applications of Artificial Neuralworks in Image Processing Ⅲ [ C ], Bellingham, WA, USA, 1998, 3307:52 ~ 63.

同被引文献318

引证文献27

二级引证文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部