期刊文献+

生物医学核磁共振中的模式识别方法 被引量:16

Pattern Recognition Methods in Biomedical Magnetic Resonance
在线阅读 下载PDF
导出
摘要 模式识别(PR)是把具体事物进行正确归类的科学, 它能解决许多对复杂体系的认识问题. 生物医学核磁共振波谱(NMR)的理解和分析便是其中一种. 在受到病理或者其他刺激后, 生物体内的代谢物水平会发生变化, 这种变化可以通过液体高分辨核磁共振的手段来观察. 模式识别把这种认识进一步深化, 不仅可以将正常状态与病理状态区分开, 还能找到是哪些生化指纹导致两种状态的差异, 为生理、病理和药理等研究, 以及临床诊断提供依据. 模式识别与生物核磁共振波谱的结合, 已经发展成为代谢组学研究的关键技术, 甚至被称为基于核磁共振的代谢组学. 主要讨论适用于生物医学核磁共振中的模式识别方法及其最新进展. Pattern recognition (PR) is the technology of making a decision on a concrete object which category it belongs to PR can be used to solve many problems in understanding complex systems One of its applications is the comprehension and analysis of biomedical magnetic resonance spectroscopy data Previous studies using high-resolution liquid NMR spectroscopy have shown that the levels of metabolites in biological samples change with the time after pathological or other perturbation PR can be used not only to identify the differences of the pathological from the normal, but also to find which bio-fingerprints result in such differences, thus supplying valuable information for diagnosis In this review, various statistical PR methods used in biomedical magnetic resonance spectroscopy are discussed, and the latest progresses in this field are introduced
出处 《波谱学杂志》 CAS CSCD 北大核心 2005年第1期99-111,共13页 Chinese Journal of Magnetic Resonance
基金 国家自然科学基金(10234070 20475061) "973"(2002CB713806)和CAS(KJCX2 SW 03)资助项目.
关键词 生物医学 核磁共振波谱 病理状态 代谢组学 正常状态 PR 药理 复杂体系 正确 NMR biomedical magnetic resonance, high-resolution nuclear magnetic resonance (HR-NMR), pattern recognition (PR), multivariate statistics, metabonomics
  • 相关文献

参考文献45

  • 1Nicholson J K,Wilson I D.High resolution proton magnetic resonance spectroscopy of biological fluids [J].Prog Nucl Magn Reson Spectrosc,1989,21:449-501.
  • 2Kowalski B R,Bender C F.Pattern Recognition.A powerful Approach to Interpreting Chemical Data [J].J Am Chem Soc,1972,94:5 632-5 639.
  • 3Kowalski B R,Bender C F.Pattern Recognition.Ⅱ.Linear and Nonlinear Methods for Displaying Chemical Data [J].J Am Chem Soc,1973,95:686-692.
  • 4Gartland K P R,Beddell C R,Lindon J C,et al.A pattern recognition approach to the comparison of PMR and clinical chemical data for classification of nephrotoxicity [J].J Pharm Biomed Anal,1990,8:963-968.
  • 5Gartland K P R,Beddell C R,Lindon J C,et al.Application of pattern recognition methods to the analysis and classification of toxicological data derived from proton nuclear magnetic resonance spectroscopy of urine [J].Mol Pharmacol,1991,39:629-642.
  • 6Nicholson J K,Lindon J C,Holmes E.Metabonomics:understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data [J].Xenobiotica,1999,29 (11):1 181-1 189.
  • 7Brindle J T,Antti H,Holmes E,et al.Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics [J].Nat Med,2002,8(12):1 439-1 444.
  • 8Ebbels T,Keun H,Beckonert O,et al.Toxicity classification from metabonomic data using a density superposition approach:'CLOUDS' [J].Anal Chim Acta,2003,490:109-122.
  • 9Nicholson J K,Connelly J,Lindon J C,et al.Metabonomics:a platform for studying drug toxicity and gene function [J].Nat Rev Drug Disc,2002,1:153-161.
  • 10Griffin J L.Metabonomics:NMR spectroscopy and pattern recognition analysis of body fluids and tissues for characterization of xenobiotic toxicity and disease diagnosis [J].Curr Opin Chem Biol,2003,7 (5):648-654.

二级参考文献57

  • 1Slim R M, Robertson D G, Albassam M, et al. Effect of dexamethasone on the metabonomics profile associated with phosphodiesterase inhibitor-induced vascular lesions in rats[J]. Toxicol Appl Pharm. 2002, 183(2): 108-109.
  • 2Raamsdonk L M,Teusink B, Broadhurst D, et al. A functional genomics strategy that uses metabolome data to reveal the phenptype of silent mutations[]J. Nat Biotech, 2001, 19(3): 45-50.
  • 3Gavaghan C L, Holmes E, Lenz E, et al. An NMR-based metabonomics approach to investigate the biochemical consequences of genetic strain differences; application to the C57BL10J and Alpk: Apfcd mouse[J]. FEBS Lett, 2000, 484(10): 169-174.
  • 4Griffin J L, Walker L A, Garrod S, et al. NMR spectroscopy based metabonomic studies on the comparative biochemistry of the kidney and urine of the bank vole (Clethrionomys glareolus ), wood mouse (Apodemus sylvaticus ), white toothed shrew (Crocidura suaveolens ) and the laboratory rat[J]. Comp Biochem. Phys B: Biochem Mol Biol, 2000, 127: 357-367.
  • 5Holmes E, Nicholson J K, Tranter G. Metabonomic characterization of genetic variations in toxicological and metabolic responses using probabilistic neural networks[J]. Chem Res Toxicol. 2001,14(2): 182-191.
  • 6Griffin J L, Williams H J, Sang E, et al. Metabolic profiling of genetic disorders: a multitissue 1H nuclear magnetic resonance spectroscopic and pattern recognition study into dystrophic tissue[J]. Anal Biochem. 2001,293(1): 16-21.
  • 7Nicholls A W, Mortishire-Smith R J, Nicholson J K. NMR spectroscopic-based metabonomic studies of urinary metabolite variation in acclimatizing germ-free rats[J]. Chem Res Toxicol, 2003, 16: 1 395-1 404.
  • 8Bollard M E, Holmes E, Lindon J C, et al. Investigations into biochemical changes due to diurnal variation and estrus cycle in female rats using high-resolution (1)H NMR spectroscopy of urine and pattern recognition[J]. Anal Biochem. 2001, 295(2): 194-202.
  • 9Brindle J T, Nicholson J K, Schofield P M, et al. Application of chemometrics to1H NMR spectroscopic data to investigate a relationship between human serum metabolic profiles and hypertension[J]. Analyst. 2003,128(1): 32-36.
  • 10Moolenaar S H, Engelke U F, Wevers R A. Proton nuclear magnetic resonance spectroscopy of body fluids in the field of inborn errors of metabolism[J]. Ann Clin Biochem. 2003, 40(1): 16-24.

共引文献44

同被引文献271

引证文献16

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部