期刊文献+

求解多目标优化问题的多智能体遗传算法 被引量:9

A Multi-Agent genetic algorithm for multiobjective programming
在线阅读 下载PDF
导出
摘要 目的 在求解多目标优化问题时,总是希望获得尽可能多的Pareto解,且这些解能够较均匀地分布在目标空间的Pareto边界上。方法 通过引入智能体的概念,并将多个智能体组成的多智能体系统与经典遗传算法相结合,给出了一种求解多目标优化问题的多智能体遗传算法。结果 对每个智能体在其邻域内进行局部Pareto寻优操作,而不是在整个群体中进行Pareto寻优,从而保证了群体的多样性,并在一定程度上抑制了种群的早熟现象。结论 该方法能够找到问题的分布较均匀的Pareto最优解。 Aim It is desirable to find more Pareto-optimal solutions which scattered uniformly over Pareto-front in solving multiobjective programming.Methods The notion of Agent is introduced and an algorithm is proposed with the combination of multi-Agent system and genetic algorithm for multiobjective programming. Results In each generation, an individual is viewed as an unit with the ability of communicating, and the Pareto-optimal solutions are found in the neighbor of each individual instead of the whole population, which ensures its diversity and restrains the prematurity.Conclusion The proposed methods can find the more Pareto solutions for multiobjective problem with good uniformity.
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第1期13-16,共4页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(69972036) 陕西省自然科学基金资助项目(2000SL03)
关键词 多目标优化 PARETO最优解 遗传算法 智能体 multiobjective programming Pareto-optimal solution genetic algorithm Agent
  • 相关文献

参考文献6

  • 1林锉云 董加礼.多目标规划的理论与方法[M].长春:吉林教育出版社,1992..
  • 2COELLO C. A comprehensive survey of evolutionary-based multiobjective optimization techniques [ J ]. Knowledge and Information System, 1999, 3 (2) :69-308.
  • 3ZITZLER E, THIELE L. Multiobjective evolutionary algorithms: a comprehensive case study and the strength pareto approach [ J ]. IEEE Trans on EC, 1999,3 ( 4 ) :257-271.
  • 4LIU Ji-ming, TANG Y Y, CAO Y C. An evolutionary autonomous agents approach to image feature extraction [ J ].IEEE Trans on Evolutionary Computation, 1997,1 (2):681-668.
  • 5WU Q. On the optimality of orthogonal experimental design[J]. Acta Math Appl Sinica, 1978, 1 (4) :283-299.
  • 6LEUNG Y W, WANG Y P. Multiobjective programming using uniform design and genetic algorithm [ J ]. IEEE Trans System Man and Cyber, 2000,30( 3 ) :293-304.

同被引文献46

引证文献9

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部