期刊文献+

铜单晶循环变形饱和阶段疲劳裂纹萌生及表面区域内应力分布的模拟 被引量:2

SIMULATION OF INTERNAL STRESSES NEAR THE SURFACE AND FATIGUE CRACK NUCLEATION FOR A COPPER SINGLE CRYSTAL IN CYCLIC DEFORMATION SATURATION STAGE
在线阅读 下载PDF
导出
摘要 利用扫描电镜电子通道衬度(SEM-ECC)技术观察了循环变形饱和阶段Cu单晶样品中近表面区域的位错微结构.在样品边缘一些条带状或斑点状呈黑色的位错组织区,利用离散位错动力学方法模拟了该区的位错微观结构,并计算了与此位错微结构相对应的内应力分布.模拟和计算结果表明,黑色区是内应力出现最大值区,即应力集中区,它与驻留滑移带(PSB)中的不均匀变形有关,是疲劳裂纹萌生最可能的位置.模拟和计算结果很好地解释了这一现象. SEM-ECC technique was employed to observe and characterize the dislocation microstructures during the saturation stage of cyclic deformations in a copper single crystal. Some band-like or spot-like dark zones were found in the dislocation microstructures, which located either at the edge region of the deformed specimen or at the interface between the dislocation matrix and the PSB. To interpret the experiment results, the near surface dislocation microstructure were simulated and the internal stress distributions induced by those dislocations were calculated by using discrete dislocation dynamics method. The simulation results show that near the free surface region, the maximum internal stresses or stress concentration, appear at the dark zones which correspond to the interfaces between the PSB and the dislocation matrix or the PSB-matrix-surface interfaces, meaning that fatigue cracks initiate preferentially at these dark zones. The simulated results can well explain the observated ones.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2005年第1期9-14,共6页 Acta Metallurgica Sinica
基金 SupportedbyAustralianResearchCouncilthroughaLargeResearchSchemeGrant(A10009166)
关键词 Cu单晶 循环变形 疲劳裂纹萌生 离散位错动力学 内应力分布 copper single crystal cyclic deformation crack nucleation discrete dislocation dynamics internal stress distribution
  • 相关文献

参考文献19

  • 1Yang J H, Li Y, Cai Z, Li S X, Ma C X, Han E H, Ke W.Mater Sci Eng, 2003; 345 A: 164.
  • 2Li S X, Li Y, Li G Y, Yang J H. Philos Mag, 2002; 82A:867.
  • 3Mughrabi H. Mater Sci Eng, 2001; 309-310 A: 237.
  • 4Holzwarth U, Essmann U. Appl Phys, 1993; 57 A: 131.
  • 5Suresh S. Fatigue of Materials. UK, Cambridge: Cambridge University Press, 1998:132.
  • 6Miller K J, de Los Rios E R. Short Fatigue Crack. London: European Structural Integrity Society Publication,1992:55.
  • 7Zhang X P, Wang C H, Chen W, Ye L, Mai Y W. Scr Mater, 2001; 44:2443.
  • 8Lukais P, Kunz L. Mater Sci Eng, 2001; A 314:7.
  • 9Forsyth P J E. Nature, 1953; 171:172.
  • 10Katigirl K, Omura A, Koyanagi K, Awatani J, Shiraishi T, Kaneshiro H. Metall Trans, 1977; 8 A: 1769.

同被引文献10

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部