期刊文献+

雷达目标三维特征的提取与识别研究 被引量:7

Research on Target Identification with ISAR Image Sequence
在线阅读 下载PDF
导出
摘要 以逆合成孔径雷达(ISAR)成像技术和计算机视觉理论为基础,提出了一套新的从动态目标ISAR成像序列 中提取目标散射点三维结构信息,以此作为目标特征的识别方法。这一研究方法包含了4个重要环节:动态目标的ISAR 像序列的获得;“散射点像元”质心的检测、跟踪和匹配;基于光流分析的目标散射点三维结构特征的提取;目标三维特征 的识别。由于经过了时间和空间上信息的积累,目标的散射点的三维结构特征具有稳定和直观的特点。作为一种新的目 标识别的依据是很有效的,且只需要较少的训练样本就可以获得较高的识别率。 Basing on ISAR imaging technology and computer vision theory, a novel target recognition method which could extract the 3-dimensional feature of targets by analyzing the 2-dimensional ISAR image sequence of the targets is presented in this paper. Four important phases are included in the method: first, obtaining of ISAR images sequence of the targets. Second, tracking and detecting 'the imaging cells of scattering points'. Third, rebuilding the 3D feature of scattering points of the target basing on the method of optical flow analysis. Finally, identifying targets by 3D feature of the target. With the theory and simulation experiment results, the obvious conclusion is that the 3D feature of the scattering points is steady because of the accumulation of the target's information in time and space. It is effective as a novel method of target recognition, and could get better recognition result with littler stylebooks.
作者 刘烽 许家栋
出处 《现代雷达》 CSCD 北大核心 2005年第1期18-21,共4页 Modern Radar
关键词 逆合成孔径雷达 散射点 三维特征 目标识别 ISAR scattering points 3-dimensional feature target identification
  • 相关文献

参考文献7

  • 1王根原,保铮.逆合成孔径雷达运动补偿中包络对齐的新方法[J].电子学报,1998,26(6):5-8. 被引量:51
  • 2Marr.视觉计算理论[M].北京:科学出版社,1987..
  • 3Wu Haiqing, Gilles Y Delisle. Precision tracking algorithms for ISAR imaging. IEEE Trans Aerospace and Electronic System,1996, 32( 1 ) :243 -254.
  • 4Toshiharu Itoh, Hachiro Sueda. Motion compensation for ISAR via centroid tracking. IEEE Trans Aerospace and Electronic System, 1996, 32(3):1 191 -1 197.
  • 5Horn B, Schunck B. Determining optical flow. Artificial Intelligence, 1981, 17. 185-203.
  • 6Kanatani K. Geometric computation for machine vision. Oxford: Oxford Science Publications, 1993.
  • 7Patrick Simpson K. Fuzzy min - max neural networks - part 1 :Classification. IEEE Trans On Neural Networks, 1992, 3(5) :776-786.

二级参考文献4

  • 1Wu H Q,IEEE Trans AES,1996年,32卷,1期,243页
  • 2Bao Z,Chin J Electron,1995年,4卷,4期,1页
  • 3Delisle G Y,IEEE Trans AES,1994年,30卷,3期,887页
  • 4Chen C,IEEE Trans AES,1980年,16卷,1期,2页

共引文献51

同被引文献75

引证文献7

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部