期刊文献+

决策树剪枝方法的比较 被引量:43

Comparison among Methods of Decision Tree Pruning
在线阅读 下载PDF
导出
摘要 为在决策树剪枝中正确选择剪枝方法,基于理论分析和算例详细地比较了当前主要的4种剪枝方法的计算复杂性、剪枝方式、误差估计和理论基础.与PEP相比,MEP产生的树精度较小且树较大;REP是最简单的剪枝方法之一,但需要独立剪枝集;在同样精度情况下,CCP比REP产生的树小.如果训练数据集丰富,可以选择REP,如果训练数据集较少且剪枝精度要求较高,则可以选用PEP. To select a suitable pruning method in decision tree pruning, four well-known pruning methods were compared in terms of computational complexity, traversal strategy, error estimation and theoretical principle by taking a classification and regression tree as an example. Compared with pessimistic error pruning (PEP), minimum error pruning (MEP) is less accurate and produces a larger tree. Reduced error pruning (REP) is one of the simplest pruning strategies, but it has the disadvantage of requiring a separate data set for pruning. Cost-complexity pruning (CCP) produces a smaller tree than REP with similar accuracy. Practically, if the training data is abundant, REP is preferable; and if the train data is the expected accuracy is high but with limited data, PEP is good choice.
作者 魏红宁
出处 《西南交通大学学报》 EI CSCD 北大核心 2005年第1期44-48,共5页 Journal of Southwest Jiaotong University
关键词 数据挖掘 决策树 事后剪枝 PEP MEP REP CCP data mining decision tree post pruning pessimistic error pruning minimum error pruning reduced error pruning cost-complexity pruning
  • 相关文献

参考文献9

  • 1Oates T, Jemen D. The effects of training set sizes on decision tree[A]. Proc of the 14th Int'l Conf on Machine Learning[C]. Nashville: Morgan Kaufman, 1997. 254-262.
  • 2Breslow L A, A_ha D W. Simplifying decision trees: a survey[J]. Knowledge Engineering Review, 1997. 12( 1 ) : 1-40.
  • 3Breiman L, Friedman J, Olshen R A, et al. Classification and regression trees[ M]. Belmont: Wadsworth, 1984. 1-358.
  • 4Nobel A. Analysis of a complexity based pruning scheme for classification trees [ J ]. IEEE Transactions on Information Theory, 2002, 48 (8) : 2 362-2 368.
  • 5Malerba D, Semeraro G, Esposito F. Choosing the best pruned decision tree: a matter of bias [A]. Proc 5th Italian Workshop on Machine Learning[C]. Parma: University of Parma, 1994. 33-37.
  • 6Quinlan J R. Simplifying decision trees [ J]. International Journal of Man-Machine Studies, 1987, 27 (3) : 221-234.
  • 7Elomaa T, Kaafiainen M. An analysis of reduced error pruning[J]. Journal of Artificial Intelligence Research, 2001, 15 :163-187.
  • 8Niblett T, Bratko I. Learning decision rules in noisy domains[A]. Proceedings of Expert Systems 86 [ C]. Cambridge:Cambridge Uninversity Press, 1986. 25-34.
  • 9Cestnik B, Bratko I. On estimating probabilities in tree pruning[ A]. Proc of European Working Sessions on Learning[ C ].Porto: Springer-Verlag, 1991. 138-150.

同被引文献308

引证文献43

二级引证文献222

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部