期刊文献+

构形理论:广义热力学优化的新方向之一 被引量:28

Constructal theory: One of new orientations of general thermodynamics optimization
在线阅读 下载PDF
导出
摘要 回顾了构形理论的产生与发展过程,指出其是广义热力学优化发展的一个新方向;阐明了热力学优化过程中运用该理论对装置进行优化的重要作用;综述了该理论拓展应用于传热、流体流动、干燥、交通运输、管网以及经济决策等领域现状;介绍了自然界中各种形式的系统和组织(生命体和非生命系统),其结构均源自于要达到整体性能最优目的这一深刻命题;指出了构形理论与场协同理论结合进行研究是下一步的发展方向。 The development of constructal theory, which had been one of the new approachs of general thermodynamic optimization, were reviewed. The great benefits of optimizing devices with the theory in thermodynamic optimizing, and the state of the arts of constructal theory and applications in heat transfer, fluid flowing, drying, traffic and transportation, piping net and economy decision-making were summarized. The principle that sorts of forms and contractures of systems and organizations in nature were derived from the permanent struggle for better performance was discussed. The general approach for future research work is to combine the constructal theory with the field synergy theory.
出处 《热科学与技术》 CAS CSCD 2004年第4期283-292,共10页 Journal of Thermal Science and Technology
基金 国家重点基础研究发展规划资助(973)项目(G2000026301)全国优秀博士学位论文作者专项资金资助项目(200136)
关键词 热力学优化 场协同理论 整体性能 装置 组织 构形 流体流动 方向 constructal theory thermodynamic optimization general thermodynamic optimization field synergy
  • 相关文献

参考文献69

  • 1陈林根,孙丰瑞.热力学优化理论的研究进展[J].武汉化工学院学报,2002,24(1):81-85. 被引量:5
  • 2[2]CHEN L, SUN F. Advances in finite time thermodynamics: Analysis and optimization [M].New York: Nova Science Publishers, 2004.
  • 3陈林根,孙丰瑞,WuChih.有限时间热力学理论和应用的发展现状[J].物理学进展,1998,18(4):395-422. 被引量:64
  • 4[4]BEJAN A. Entropy generation minimization: the new thermodynamics of finite size devices and finite time process [J]. J Appl Phys, 1996, 79(3):1191-1218.
  • 5[5]RADCENCO V. Generalized thermodynamics [M].Bucharest: Editura Technica, 1994.
  • 6[6]CHEN L, WU C, SUN F. Finite time thermodynamic optimization or entropy generation minimization of energy systems [J]. J Non-Equibri Thermodyn, 1999,24(4): 327-359.
  • 7[7]BEJAN A. Shape and structure, from engineering to nature. cambridge [M]. Cambridge: Cambridge Univ. Press, 2000.
  • 8[8]MANDELBROT B B. The fractal geometry of nature [M]. New York:W H Freeman, 1982.
  • 9[9]BEJAN A. Street network theory of organization in nature [J]. J Advanced Transportation, 1996,30(2) : 85-107.
  • 10[10]BEJAN A. How nature takes shape [J].Mechanical Engng, 1997(10): 90-92.

二级参考文献132

共引文献519

同被引文献325

引证文献28

二级引证文献191

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部