期刊文献+

增生算子方程的具误差的Ishikawa迭代序列的收敛率估计 被引量:2

Conrergence Rate Estimate of Ishikawa Iteration Mathod with Errors for Equations Involving Accrative Operators
在线阅读 下载PDF
导出
摘要 设 X 是一实的 Banach 空间,T : X → X 是一 Lipschitz 的增生算子。本文证明了具误差 的 Ishikawa 迭代序列强收敛到方程 x + Tx = f 的唯一解;并得一个一般的收敛估计式。 若 T : X → X 是一 Lipschitz 的强增生算子,则具误差的 Ishikawa 迭代序列强收敛到方 程 Tx = f 的唯一解。本文结果推广和发展了现有的相应结果。 Let X be an arbitrary real Banach spaces and be a Lipschitz accretive operator. It is shown that the Ishikawa iterative sequence with errors converges strongly to the unique solution of the equstion. Moreover, our result provides a general convergence rate estimate for such a sequence. Utilizing this result, we imply that if be a Lipschitz strongly accretive operator. Then the Ishikawa iterative sequence with errors converges strongly to the unique solution of the equation. The results presented in this paper extend and improve the recent corresponding results.
机构地区 大理学院数学系
出处 《工程数学学报》 CSCD 北大核心 2004年第6期967-972,共6页 Chinese Journal of Engineering Mathematics
基金 大理学院科研基金资助项目(2002X42).
关键词 实BANACH空间 增生算子 具误差的Ishikmva迭代序列 收敛率估计 arbitrary real Banach spaces accretive operator Ishikawa iterative process with errors convergence rate estimate
  • 相关文献

参考文献6

  • 1Browder F E. Nonlinear mapping of nonexpansive and accretive type in Banach spaces[J]. Bull Amer Math Soc, 1967;73:875-882
  • 2Morales C. Pseudocontractive mapping and Leray-Schauder boundary condition[J]. Comment Math Univ Carolina, 1979;20:745-746
  • 3Liu L W. Strong convergence of iteration methods for equation involving accretive operators in Banach spaces[J]. Nonlinear Anal, 2000;42:271-276
  • 4Tan K K, Xu H K. Iterative solutions to nonlinear equations of strongly accretive operators in Banach spaces[J]. J Math Anal Appl, 1993;178:9-21
  • 5Liu L W. Approximation of fixed points of a strictly pseudocontractive mapping[J]. Proc Amer Math Soc,1997; 125:1363-1366
  • 6Sastry K P R, Babu G V R. Approximation of fixed points of a strictly pseudocontractive mapping on arbitraty closed, convex sets in Banach spaces[J]. Proc Amer Math Soc, 2000;128:2907-2909

同被引文献24

  • 1曾六川.关于增生算子方程解的Ishikawa迭代逼近[J].Journal of Mathematical Research and Exposition,2005,25(1):92-98. 被引量:3
  • 2张树义.Banach空间中增生算子方程的Ishikawa迭代解[J].数学理论与应用,2005,25(2):26-29. 被引量:4
  • 3张树义.Lipschitz φ-半压缩映象不动点的迭代逼近[J].鲁东大学学报(自然科学版),2007,23(1):14-18. 被引量:6
  • 4Liu L W. Approximation of fixed points of a strictly pseudo-contractive mapping[J]. Proc Amer Math Soc, 1997, 125:1363-1366.
  • 5Browder F E, Petryshyn W V. Construction of fixed points of nonlinear mappings in Hilbert spaees[J]. J Math Anal Appl, 1967,20 : 197-228.
  • 6Hicks T L, Kubicek J R. On the Mann iteration process in Hilbert spaces[J].J Math Anal Appl, 1977,59:498- 504.
  • 7Maruster S. The solution by iteration of nonlinear equations[J]. Prc Amer Math Soc,1977,66..69-73.
  • 8Osilike M O, Udomene A. Demiclosedness principle and convergence results for strictly pseudocontractive mappings of Browder-Petryshyn type[J].J Math Anal Appl, 2001,256 : 431-445.
  • 9Osilike M O. Strong and weak convergence of the Ishikawa iteration methods for a class of nonlinear equations[J]. Bull Korean, Math Soc, 2000,37: 117-127.
  • 10Rhoades B E. Commentson two fixed point iteration methods[J]. J Math Anal Appl,1976,56:741-750.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部