期刊文献+

基于能量分布特征的地震事件自动识别 被引量:5

Discriminating seismic events based on energy-distributing feature
在线阅读 下载PDF
导出
摘要 研究了地震信号在小波包变换下的特性,依据地震事件识别中"历史事例对比法"的思想,根据不同震源地震信号频率时变特性的不同,提出了基于"能量分布特征"的特征值,同时采用该特征值用神经网络方法对地震事件进行识别分类。该方法不依赖于系统的数学模型,而是直接利用各频率成分能量的变化提取特征值作为神经网络的输入特征向量来进行事件的识别,避免了对地震信号、传播途径准确建模的困难,简便、直观地完成了事件的识别。实验证明,该方法的事件识别率可达到99%以上,是一种有效的地震事件识别方法。 It is studied in this paper about the feature of seismic signal by wavelet packet. According to the difference of the time-frequency about seismic signals, a energy-distributing feature is proposed to i-dentify seismic events by neural network. This method directly extracts the feature of seismic signal by energy varying of every frequency component, which forms the input vectors of neural network to conveniently identify the seismic events. It doesn't depend on the mathematic model, and avoids the difficulty of exactly designing model about the spreading route of seismic signal. The ratio of discrimination to seismic signals is more than 99% by our experiment. It is proved to be the effective method.
出处 《核电子学与探测技术》 CAS CSCD 北大核心 2004年第6期698-701,共4页 Nuclear Electronics & Detection Technology
关键词 特征值 能量分布 实验证明 特征向量 地震事件 事例 神经网络方法 地震信号 频率成分 震源 wavelet-package transform seismic events neural network feature extracting classification
  • 相关文献

参考文献3

  • 1Mallat SG. Multifrequency channel decompositions of images and wavelet models [J]. IEEE Trans. ASSP, 1989, 37(12):2091.
  • 2Daubchies I. Orthogonal bases of compactly supported wavelets [J]. Communication Pure and Appl Mathematics, 1988, 41:909.
  • 3Coifman RR. Adapted multiresolution analysis, computation, signal processing and operator theory [M]. Proceeding of the International Congress of Mathematicians, Kyoto, Math Soc Japan, 1990, 887.

同被引文献73

引证文献5

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部